Symmetry and Classification of the Dirac–Fock Equation
- Autores: Shapovalov V.N.1
-
Afiliações:
- Gorodovikov Kalmyk State University
- Edição: Volume 197, Nº 2 (2018)
- Páginas: 1572-1591
- Seção: Article
- URL: https://journals.rcsi.science/0040-5779/article/view/171975
- DOI: https://doi.org/10.1134/S0040577918110028
- ID: 171975
Citar
Resumo
We consider the properties of the Dirac–Fock equation with differential operators of the first-order symmetry. For a relativistic particle in an electromagnetic field, we describe the covariant properties of the Dirac equation in an arbitrary Riemannian space V4 with the signature (−1,−1,−1, 1). We present a general form of the differential operator with a first-order symmetry and characterize the pair of such commuting operators. We list the spaces where the free Dirac equation admits at least one differential operator with a first-order symmetry. We perform a symmetry classification of electromagnetic field tensors and construct complete sets of symmetry operators.
Palavras-chave
Sobre autores
V. Shapovalov
Gorodovikov Kalmyk State University
Autor responsável pela correspondência
Email: ppa@kalmsu.ru
Rússia, Elista
Arquivos suplementares
