Nonlocal Reductions of The Multicomponent Nonlinear Schrödinger Equation on Symmetric Spaces


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Our aim is to develop the inverse scattering transform for multicomponent generalizations of nonlocal reductions of the nonlinear Schrödinger (NLS) equation with \(\mathcal{PT}\) symmetry related to symmetric spaces. This includes the spectral properties of the associated Lax operator, the Jost function, the scattering matrix, the minimum set of scattering data, and the fundamental analytic solutions. As main examples, we use theManakov vector Schrödinger equation (related to A.III-symmetric spaces) and the multicomponent NLS (MNLS) equations of Kulish–Sklyanin type (related to BD.I-symmetric spaces). Furthermore, we obtain one- and two-soliton solutions using an appropriate modification of the Zakharov–Shabat dressing method. We show that the MNLS equations of these types admit both regular and singular soliton configurations. Finally, we present different examples of one- and two-soliton solutions for both types of models, subject to different reductions.

Sobre autores

G. Grahovski

Department of Mathematical Sciences

Autor responsável pela correspondência
Email: grah@essex.ac.uk
Reino Unido da Grã-Bretanha e Irlanda do Norte, Colchester

J. Mustafa

Department of Mathematical Sciences

Email: grah@essex.ac.uk
Reino Unido da Grã-Bretanha e Irlanda do Norte, Colchester

H. Susanto

Department of Mathematical Sciences

Email: grah@essex.ac.uk
Reino Unido da Grã-Bretanha e Irlanda do Norte, Colchester

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2018