Ground States and Phase Transition of the λ Model on the Cayley Tree
- Autores: Mukhamedov F.1, Pah C.H.2, Jamil H.2
-
Afiliações:
- Department of Mathematical Sciences, College of Science
- Department of Computational and Theoretical Sciences, Faculty of Science
- Edição: Volume 194, Nº 2 (2018)
- Páginas: 260-273
- Seção: Article
- URL: https://journals.rcsi.science/0040-5779/article/view/171635
- DOI: https://doi.org/10.1134/S004057791802006X
- ID: 171635
Citar
Resumo
We consider the λ model, a generalization of the Potts model, with spin values {1, 2, 3} on the order-two Cayley tree. We describe the model ground states and prove that translation-invariant Gibb measures exist, which means that a phase transition exists. We establish that two-periodic Gibbs measures exist.
Palavras-chave
Sobre autores
F. Mukhamedov
Department of Mathematical Sciences, College of Science
Autor responsável pela correspondência
Email: far75m@gmail.com
Emirados Árabes Unidos, Al Ain
Chin Pah
Department of Computational and Theoretical Sciences, Faculty of Science
Email: far75m@gmail.com
Malásia, Kuantan
H. Jamil
Department of Computational and Theoretical Sciences, Faculty of Science
Email: far75m@gmail.com
Malásia, Kuantan
Arquivos suplementares
