Rogue-wave solutions of the Zakharov equation


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Using the bilinear transformation method, we derive general rogue-wave solutions of the Zakharov equation. We present these Nth-order rogue-wave solutions explicitly in terms of Nth-order determinants whose matrix elements have simple expressions. We show that the fundamental rogue wave is a line rogue wave with a line profile on the plane (x, y) arising from a constant background at t ≪ 0 and then gradually tending to the constant background for t ≫ 0. Higher-order rogue waves arising from a constant background and later disappearing into it describe the interaction of several fundamental line rogue waves. We also consider different structures of higher-order rogue waves. We present differences between rogue waves of the Zakharov equation and of the first type of the Davey–Stewartson equation analytically and graphically.

Авторлар туралы

Jiguang Rao

Mathematics Department, Faculty of Science

Email: jshe@ustc.edu.cn
ҚХР, Ningbo

Lihong Wang

Faculty of Mechanical Engineering & Mechanics

Email: jshe@ustc.edu.cn
ҚХР, Ningbo

Wei Liu

School of Mathematical Sciences

Email: jshe@ustc.edu.cn
ҚХР, Hefei

Jingsong He

Mathematics Department, Faculty of Science

Хат алмасуға жауапты Автор.
Email: jshe@ustc.edu.cn
ҚХР, Ningbo

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2017