Scale transformations in phase space and stretched states of a harmonic oscillator


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We consider scale transformations (q, p) → (λq, λp) in phase space. They induce transformations of the Husimi functions H(q, p) defined in this space. We consider the Husimi functions for states that are arbitrary superpositions of n-particle states of a harmonic oscillator. We develop a method that allows finding so-called stretched states to which these superpositions transform under such a scale transformation. We study the properties of the stretched states and calculate their density matrices in explicit form. We establish that the density matrix structure can be described using negative binomial distributions. We find expressions for the energy and entropy of stretched states and calculate the means of the number-ofstates operator. We give the form of the Heisenberg and Robertson–Schrödinger uncertainty relations for stretched states.

作者简介

V. Andreev

Lebedev Physical Institute of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: andrvlad@yandex.ru
俄罗斯联邦, Moscow

D. Davidović

Vinča Institute for Nuclear Sciences

Email: andrvlad@yandex.ru
, Belgrade

L. Davidović

Institute of Physics

Email: andrvlad@yandex.ru
, Belgrade

Milena Davidović

Faculty of Civil Engineering

Email: andrvlad@yandex.ru
, Belgrade

Miloš Davidović

Vinča Institute for Nuclear Sciences

Email: andrvlad@yandex.ru
, Belgrade

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2017