Toward a classification of quasirational solutions of the nonlinear Schrödinger equation
- 作者: Gaillard P.1
-
隶属关系:
- Institut de Mathématiques de Bourgogne
- 期: 卷 189, 编号 1 (2016)
- 页面: 1440-1449
- 栏目: Article
- URL: https://journals.rcsi.science/0040-5779/article/view/170790
- DOI: https://doi.org/10.1134/S0040577916100044
- ID: 170790
如何引用文章
详细
Based on a representation in terms of determinants of the order 2N, we attempt to classify quasirational solutions of the one-dimensional focusing nonlinear Schrödinger equation and also formulate several conjectures about the structure of the solutions. These solutions can be written as a product of a t-dependent exponential times a quotient of two N(N+1)th degree polynomials in x and t depending on 2N−2 parameters. It is remarkable that if all parameters are equal to zero in this representation, then we recover the PN breathers.
作者简介
P. Gaillard
Institut de Mathématiques de Bourgogne
编辑信件的主要联系方式.
Email: pierre.gaillard@u-bourgogne.fr
法国, Dijon
补充文件
