🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

Weak First-Order Transition and Pseudoscaling Behavior in the Universality Class of the O(N) Ising Model


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Using Monte Carlo and renormalization group methods, we investigate systems with critical behavior described by two order parameters: continuous (vector) and discrete (scalar). We consider two models of classical three-dimensional Heisenberg magnets with different numbers of spin components N = 1,…,4: the model on a cubic lattice with an additional competing antiferromagnetic exchange interaction in a layer and the model on a body-centered lattice with two competing antiferromagnetic interactions. In both models, we observe a first-order transition for all values of N. In the case where competing exchanges are approximately equal, the first order of a transition is close to the second order, and pseudoscaling behavior is observed with critical exponents differing from those of the O(N) model. In the case N = 2, the critical exponents are consistent with the well-known indices of the class of magnets with a noncollinear spin ordering. We also give a possible explanation of the observed pseudoscaling in the framework of the renormalization group analysis.

Sobre autores

A. Sorokin

Petersburg Nuclear Physics Institute

Autor responsável pela correspondência
Email: aosorokin@gmail.com
Rússia, Gatchina, Leningrad Oblast

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2019