Bogoliubov Quasiaverages: Spontaneous Symmetry Breaking and the Algebra of Fluctuations


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We present arguments supporting the use of the Bogoliubov method of quasiaverages for quantum systems. First, we elucidate how it can be used to study phase transitions with spontaneous symmetry breaking (SSB). For this, we consider the example of Bose–Einstein condensation in continuous systems. Analysis of different types of generalized condensations shows that the only physically reliable quantities are those defined by Bogoliubov quasiaverages. In this connection, we also solve the Lieb–Seiringer–Yngvason problem. Second, using the scaled Bogoliubov method of quasiaverages and considering the example of a structural quantum phase transition, we examine a relation between SSB and critical quantum fluctuations. We show that the quasiaverages again provide a tool suitable for describing the algebra of critical quantum fluctuation operators in both the commutative and noncommutative cases.

作者简介

W. Wreszinski

Instituto de Física

编辑信件的主要联系方式.
Email: wreszins@gmail.com
巴西, São Paulo

V. Zagrebnov

Département de Mathématiques; Institut de Mathématiques de Marseille

Email: wreszins@gmail.com
法国, Marseille; Marseille

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2018