Algebraic and geometric structures of analytic partial differential equations
- Авторлар: Kaptsov O.V.1,2
-
Мекемелер:
- Institute of Computational Modeling, Siberian Branch
- Siberian Federal University
- Шығарылым: Том 189, № 2 (2016)
- Беттер: 1592-1608
- Бөлім: Article
- URL: https://journals.rcsi.science/0040-5779/article/view/170829
- DOI: https://doi.org/10.1134/S0040577916110052
- ID: 170829
Дәйексөз келтіру
Аннотация
We study the problem of the compatibility of nonlinear partial differential equations. We introduce the algebra of convergent power series, the module of derivations of this algebra, and the module of Pfaffian forms. Systems of differential equations are given by power series in the space of infinite jets. We develop a technique for studying the compatibility of differential systems analogous to the Gröbner bases. Using certain assumptions, we prove that compatible systems generate infinite manifolds.
Авторлар туралы
O. Kaptsov
Institute of Computational Modeling, Siberian Branch; Siberian Federal University
Хат алмасуға жауапты Автор.
Email: kaptsov@icm.krasn.ru
Ресей, Krasnoyarsk; Krasnoyarsk
Қосымша файлдар
