Uniform Asymptotic Solution in the Form of an Airy Function for Semiclassical Bound States in One-Dimensional and Radially Symmetric Problems
- 作者: Anikin A.Y.1,2, Dobrokhotov S.Y.1,2, Nazaikinskii V.E.1,2, Tsvetkova A.V.1,2
-
隶属关系:
- Ishlinsky Institute for Problems in Mechanics
- Moscow Institute of Physics and Technology (State University)
- 期: 卷 201, 编号 3 (2019)
- 页面: 1742-1770
- 栏目: Article
- URL: https://journals.rcsi.science/0040-5779/article/view/172609
- DOI: https://doi.org/10.1134/S0040577919120079
- ID: 172609
如何引用文章
详细
We consider stationary scalar and vector problems for differential and pseudodifferential operators leading to the appearance of asymptotic solutions of one-dimensional problems localized in a neighborhood of intervals (“bound states”). Based on the semiclassical approximation and the Maslov canonical operator, we develop a constructive algorithm that allows writing an asymptotic solution globally under certain conditions using an Airy function of complex argument.
作者简介
A. Anikin
Ishlinsky Institute for Problems in Mechanics; Moscow Institute of Physics and Technology (State University)
编辑信件的主要联系方式.
Email: anikin83@inbox.ru
俄罗斯联邦, Moscow; Dolgoprudny, Moscow Oblast
S. Dobrokhotov
Ishlinsky Institute for Problems in Mechanics; Moscow Institute of Physics and Technology (State University)
编辑信件的主要联系方式.
Email: dobr@ipmnet.ru
俄罗斯联邦, Moscow; Dolgoprudny, Moscow Oblast
V. Nazaikinskii
Ishlinsky Institute for Problems in Mechanics; Moscow Institute of Physics and Technology (State University)
编辑信件的主要联系方式.
Email: nazay@ipmnet.ru
俄罗斯联邦, Moscow; Dolgoprudny, Moscow Oblast
A. Tsvetkova
Ishlinsky Institute for Problems in Mechanics; Moscow Institute of Physics and Technology (State University)
编辑信件的主要联系方式.
Email: moskal_l@mail.ru
俄罗斯联邦, Moscow; Dolgoprudny, Moscow Oblast
补充文件
