Combinatorial Yang–Baxter maps arising from the tetrahedron equation


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We survey the matrix product solutions of the Yang–Baxter equation recently obtained from the tetrahedron equation. They form a family of quantum R-matrices of generalized quantum groups interpolating the symmetric tensor representations of Uq(An−1(1)) and the antisymmetric tensor representations of \({U_{ - {q^{ - 1}}}}\left( {A_{n - 1}^{\left( 1 \right)}} \right)\). We show that at q = 0, they all reduce to the Yang–Baxter maps called combinatorial R-matrices and describe the latter by an explicit algorithm.

作者简介

A. Kuniba

University of Tokyo

编辑信件的主要联系方式.
Email: atsuo@gokutan.c.u-tokyo.ac.jp
日本, Tokyo

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2016