Открытый доступ Открытый доступ  Доступ закрыт Доступ предоставлен  Доступ закрыт Только для подписчиков

Том 191, № 1 (2017)

Article

Global unsolvability of a nonlinear conductor model in the quasistationary approximation

Korpusov M., Yushkov E.

Аннотация

We study initial-boundary value problems for a model differential equation in a bounded region with a quadratic nonlinearity of a special type typical for the theory of conductors. Using the test function method, we show that such a nonlinearity can lead to global unsolvability with respect to time, which from the physical standpoint means an electrical breakdown of the conductor in a finite time. For the simplest test functions, we obtain sufficient conditions for the unsolvability of the model problems and estimates of the blowup rate and time. With concrete examples, we demonstrate the possibility of using the method for one-, two- and three-dimensional problems with classical and nonclassical boundary conditions. We separately consider the Neumann and Navier problems in bounded RN regions (N ≥ 2).

Theoretical and Mathematical Physics. 2017;191(1):471-479
pages 471-479 views

Polynomial forms for quantum elliptic Calogero–Moser Hamiltonians

Matushko M., Sokolov V.

Аннотация

We hypothesize the form of a transformation reducing the elliptic AN Calogero–Moser operator to a differential operator with polynomial coefficients. We verify this hypothesis for N ≤ 3 and, moreover, give the corresponding polynomial operators explicitly.

Theoretical and Mathematical Physics. 2017;191(1):480-490
pages 480-490 views

Ionization in a two-mode quantized electromagnetic field

Makarov D., Matveev V.

Аннотация

We find an analytic solution of the Schrödinger equation for an electron in a two-mode quantized electromagnetic field. The obtained solution allows calculating the spectra of photoelectrons and atom ionization rates in strong electromagnetic fields.

Theoretical and Mathematical Physics. 2017;191(1):491-498
pages 491-498 views

The method of amplitude functions in two-dimensional scattering theory

Pupyshev V.

Аннотация

We present a formulation and mathematical justification of the method of amplitude functions. This method allows solving the radial problem of the two-dimensional scattering of a quantum particle by the sum of a Coulomb potential and a certain short-range or long-range central potential.

Theoretical and Mathematical Physics. 2017;191(1):499-523
pages 499-523 views

Perturbation theory in the scattering problem for a three-particle system

Gradusov V., Yakovlev S.

Аннотация

We consider the scattering problem for a system of three nonrelativistic particles in the case of energies below the threshold of the system breakup into three free particles. We assume that the interaction potentials can be represented as a sum of two terms, one of which is a small perturbation. We develop a perturbation theory scheme for solving the scattering problem based on the three-particle Faddeev equations.

Theoretical and Mathematical Physics. 2017;191(1):524-536
pages 524-536 views

Dissipation effects in infinite-dimensional Hamiltonian systems

Saulin S.

Аннотация

We show that the potential coupling of classical mechanical systems (an oscillator and a heat bath), one of which (the heat bath) is linear and infinite-dimensional, can provoke energy dissipation in a finitedimensional subsystem (the oscillator). Under natural assumptions, the final dynamics of an oscillator thus reduces to a tendency toward equilibrium. D. V. Treschev previously obtained results concerning the dynamics of an oscillator with one degree of freedom and a quadratic or (under some additional assumptions) polynomial potential. Later, A. V. Dymov considered the case of a linear oscillator with an arbitrary (finite) number of degrees of freedom. We generalize these results to the case of a heat bath (consisting of several components) and a multidimensional oscillator (either linear or nonlinear).

Theoretical and Mathematical Physics. 2017;191(1):537-557
pages 537-557 views

Canonical ensemble of particles in a self-avoiding random walk

Alkhimov V.

Аннотация

We consider an ensemble of particles not interacting with each other and randomly walking in the d-dimensional Euclidean space ℝd. The individual moves of each particle are governed by the same distribution, but after the completion of each such move of a particle, its position in the medium is “marked” as a region in the form of a ball of diameter r0, which is not available for subsequent visits by this particle. As a result, we obtain the corresponding ensemble in ℝd of marked trajectories in each of which the distance between the centers of any pair of these balls is greater than r0. We describe a method for computing the asymptotic form of the probability density Wn(r) of the distance r between the centers of the initial and final balls of a trajectory consisting of n individual moves of a particle of the ensemble. The number n, the trajectory modulus, is a random variable in this model in addition to the distance r. This makes it necessary to determine the distribution of n, for which we use the canonical distribution obtained from the most probable distribution of particles in the ensemble over the moduli of their trajectories. Averaging the density Wn(r) over the canonical distribution of the modulus n allows finding the asymptotic behavior of the probability density of the distance r between the ends of the paths of the canonical ensemble of particles in a self-avoiding random walk in ℝd for 2 ≤ d < 4.

Theoretical and Mathematical Physics. 2017;191(1):558-571
pages 558-571 views

Topological nature of the inertiality of a nonequilibrium system far from equilibrium

Saikhanov M.

Аннотация

We consider inertial and topological properties of a nonequilibrium system far from the equilibrium. We show that from the topological standpoint, the layered structure of the energy levels of a nonequilibrium system leads to the concept of connectivity. We state an assumption on the key role of the dimension of the hypersurface of the full entropy production in the study of the inertiality of an irreversible process in a nonequilibrium system including in the region of unstable states.

Theoretical and Mathematical Physics. 2017;191(1):572-579
pages 572-579 views

Stability characteristics of periodic streaming fluids in porous media

Alkharashi S., Gamiel Y.

Аннотация

We study the linear stability of a three-layer flow of immiscible liquids located in a periodic normal electric field. We consider certain porous media assumed to be uniform, homogeneous, and isotropic. We analytically and numerically simulate the system of linear evolution equations of such a medium. The linearized problem leads to a system of two Mathieu equations with complex coefficients of the damping terms. We study the effects of the streaming velocity, permeability of the porous medium, and the electrical properties of the flow of a thin layer (film) of liquid on the flow instability. We consider several special cases of such systems. As a special case, we consider a uniform electric field and solve the transition curve equations up to the second order in a small dimensionless parameter. We show that the dielectric constant ratio and also the electric field play a destabilizing role in the stability criteria, while the porosity has a dual effect on the wave motion. In the case of an alternating electric field and a periodic velocity, we use the method of multiple time scales to calculate approximate solutions and analyze the stability criteria in the nonresonance and resonance cases; we also obtain transition curves in these cases. We show that an increase in the velocity and the electric field promote oscillations and hence have a destabilizing effect.

Theoretical and Mathematical Physics. 2017;191(1):580-601
pages 580-601 views

Spin–density correlations and magnetic neutron scattering in ferromagnetic metals

Melnikov N., Paradezhenko G., Reser B.

Аннотация

We obtain expressions for the spatial spin-density correlator and for effective and local magnetic moments in the dynamic spin-fluctuation theory. We derive formulas for the magnetic scattering cross section in the theory of itinerant electron magnets. We calculate magnetic characteristics of bcc Fe in the paramagnetic state and compare our numerical results with the polarized neutron scattering experiment. We show that the short-range order in bcc Fe persists up to a temperature much higher than the Curie temperature but at rather small distances (up to 5Å).

Theoretical and Mathematical Physics. 2017;191(1):602-619
pages 602-619 views

Proper conformal Killing vectors in static plane symmetric space–times

Hussain T., Khan S., Bokhari A., Khan G.

Аннотация

Conformal Killing vectors (CKVs) in static plane symmetric space–times were recently studied by Saifullah and Yazdan, who concluded by remarking that static plane symmetric space–times do not admit any proper CKV except in the case where these space–times are conformally flat. We present some non-conformally flat static plane symmetric space–time metrics admitting proper CKVs. For these space–times, we also investigate a special type of CKVs, known as inheriting CKVs.

Theoretical and Mathematical Physics. 2017;191(1):620-629
pages 620-629 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».