Bethe Vectors for Orthogonal Integrable Models
- Authors: Liashyk A.N.1, Pakuliak S.Z.2, Ragoucy E.3, Slavnov N.A.2
-
Affiliations:
- Skolkovo Institute of Science and Technology
- Steklov Mathematical Institute of Russian Academy of Sciences
- Laboratoire de Physique Théorique
- Issue: Vol 201, No 2 (2019)
- Pages: 1545-1564
- Section: Article
- URL: https://journals.rcsi.science/0040-5779/article/view/172539
- DOI: https://doi.org/10.1134/S0040577919110023
- ID: 172539
Cite item
Abstract
We consider quantum integrable models associated with the \(\mathfrak{so}_3\) algebra and describe Bethe vectors of these models in terms of the current generators of the \(\mathcal{D}Y(\mathfrak{so}_3)\) algebra. To implement this program, we use an isomorphism between the R-matrix and the Drinfeld current realizations of the Yangians and their doubles for classical type B-, C-, and D-series algebras. Using these results, we derive the actions of the monodromy matrix elements on off-shell Bethe vectors. We obtain recurrence relations for off-shell Bethe vectors and Bethe equations for on-shell Bethe vectors. The formulas for the action of the monodromy matrix elements can also be used to calculate scalar products in the models associated with the \(\mathfrak{so}_3\) algebra.
About the authors
A. N. Liashyk
Skolkovo Institute of Science and Technology
Author for correspondence.
Email: a.liashyk@gmail.com
Russian Federation, Moscow
S. Z. Pakuliak
Steklov Mathematical Institute of Russian Academy of Sciences
Author for correspondence.
Email: stanislav.pakuliak@jinr.ru
Russian Federation, Moscow
E. Ragoucy
Laboratoire de Physique Théorique
Author for correspondence.
Email: eric.ragoucy@lapth.cnrs.fr
France, Annecy-le-Vieux
N. A. Slavnov
Steklov Mathematical Institute of Russian Academy of Sciences
Author for correspondence.
Email: nslavnov@mi-ras.ru
Russian Federation, Moscow
Supplementary files
