Quasirenormalizable Quantum Field Theories
- Authors: Polyakov M.V.1,2, Semenov-Tian-Shansky K.M.2,3, Smirnov A.O.4, Vladimirov A.A.5
-
Affiliations:
- Fakultät für Physik und Astronomie, Institut für Theoretische Physik II
- Petersburg Nuclear Physics Institute
- St. Petersburg National Research Academic University of the Russian Academy of Sciences
- St. Petersburg State University of Aerospace Instrumentation
- Institut für Theoretische Physik
- Issue: Vol 200, No 2 (2019)
- Pages: 1176-1192
- Section: Article
- URL: https://journals.rcsi.science/0040-5779/article/view/172394
- DOI: https://doi.org/10.1134/S0040577919080105
- ID: 172394
Cite item
Abstract
Leading logarithms in massless nonrenormalizable effective field theories can be computed using nonlinear recurrence relations. These recurrence relations follow from the fundamental requirements of unitarity, analyticity, and crossing symmetry of scattering amplitudes and generalize the renormalization group technique to the case of nonrenormalizable effective field theories. We review the existing exact solutions of nonlinear recurrence relations relevant for field theory applications. We introduce a new class of quantum field theories (quasirenormalizable field theories) in which resumming leading logarithms for 2→2 scattering amplitudes yields a possibly infinite number of Landau poles.
About the authors
M. V. Polyakov
Fakultät für Physik und Astronomie, Institut für Theoretische Physik II; Petersburg Nuclear Physics Institute
Email: kirill.semenov@thd.pnpi.spb.ru
Germany, Bochum; Gatchina
K. M. Semenov-Tian-Shansky
Petersburg Nuclear Physics Institute; St. Petersburg National Research Academic University of the Russian Academy of Sciences
Author for correspondence.
Email: kirill.semenov@thd.pnpi.spb.ru
Russian Federation, Gatchina; St. Petersburg
A. O. Smirnov
St. Petersburg State University of Aerospace Instrumentation
Email: kirill.semenov@thd.pnpi.spb.ru
Russian Federation, St. Petersburg
A. A. Vladimirov
Institut für Theoretische Physik
Email: kirill.semenov@thd.pnpi.spb.ru
Germany, Regensburg
Supplementary files
