Quasirenormalizable Quantum Field Theories


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Leading logarithms in massless nonrenormalizable effective field theories can be computed using nonlinear recurrence relations. These recurrence relations follow from the fundamental requirements of unitarity, analyticity, and crossing symmetry of scattering amplitudes and generalize the renormalization group technique to the case of nonrenormalizable effective field theories. We review the existing exact solutions of nonlinear recurrence relations relevant for field theory applications. We introduce a new class of quantum field theories (quasirenormalizable field theories) in which resumming leading logarithms for 2→2 scattering amplitudes yields a possibly infinite number of Landau poles.

About the authors

M. V. Polyakov

Fakultät für Physik und Astronomie, Institut für Theoretische Physik II; Petersburg Nuclear Physics Institute

Email: kirill.semenov@thd.pnpi.spb.ru
Germany, Bochum; Gatchina

K. M. Semenov-Tian-Shansky

Petersburg Nuclear Physics Institute; St. Petersburg National Research Academic University of the Russian Academy of Sciences

Author for correspondence.
Email: kirill.semenov@thd.pnpi.spb.ru
Russian Federation, Gatchina; St. Petersburg

A. O. Smirnov

St. Petersburg State University of Aerospace Instrumentation

Email: kirill.semenov@thd.pnpi.spb.ru
Russian Federation, St. Petersburg

A. A. Vladimirov

Institut für Theoretische Physik

Email: kirill.semenov@thd.pnpi.spb.ru
Germany, Regensburg

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Pleiades Publishing, Ltd.