Reflection and Refraction of Solitons by the KdV–Burgers Equation in Nonhomogeneous Dissipative Media


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We study the behavior of the soliton that encounters a barrier with dissipation while moving in a nondissipative medium. We use the Korteweg–de Vries–Burgers equation to model this situation. The modeling includes the case of a finite dissipative layer similar to a wave passing through air–glass–air and also a wave passing from a nondissipative layer into a dissipative layer (similar to light passing from air to water). The dissipation predictably reduces the soliton amplitude/velocity. Other effects also occur in the case of a finite barrier in the soliton path: after the wave leaves the dissipative barrier, it retains the soliton form, but a reflection wave arises as small and quasiharmonic oscillations (a breather). The breather propagates faster than the soliton passing through the barrier.

作者简介

A. Samokhin

Trapeznikov Institute of Control Sciences, RAS; Moscow State Technical University of Civil Aviation

编辑信件的主要联系方式.
Email: samohinalexey@gmail.com
俄罗斯联邦, Moscow; Moscow

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2018