Four-Parameter 1/r2 Singular Short-Range Potential with Rich Bound States and A Resonance Spectrum


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

We use the tridiagonal representation approach to enlarge the class of exactly solvable quantum systems. For this, we use a square-integrable basis in which the matrix representation of the wave operator is tridiagonal. In this case, the wave equation becomes a three-term recurrence relation for the expansion coefficients of the wave function with a solution in terms of orthogonal polynomials that is equivalent to a solution of the original problem. We obtain S-wave bound states for a new four-parameter potential with a 1/r2 singularity but short-range, which has an elaborate configuration structure and rich spectral properties. A particle scattered by this potential must overcome a barrier and can then be trapped in the potential valley in a resonance or bound state. Using complex rotation, we demonstrate the rich spectral properties of the potential in the case of a nonzero angular momentum and show how this structure varies with the parameters of the potential.

Авторлар туралы

A. Alhaidari

Saudi Center for Theoretical Physics

Хат алмасуға жауапты Автор.
Email: a.d.alhaidari@gmail.com
Сауд Арабиясы, Jeddah

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2018