Generalized Lattice Heisenberg Magnet Model and Its Quasideterminant Soliton Solutions
- Авторы: Wajahat H.1, Riaz A.1, Hassan M.1
-
Учреждения:
- Department of Physics
- Выпуск: Том 195, № 2 (2018)
- Страницы: 665-675
- Раздел: Article
- URL: https://journals.rcsi.science/0040-5779/article/view/171756
- DOI: https://doi.org/10.1134/S0040577918050033
- ID: 171756
Цитировать
Аннотация
We consider a Darboux transformation of a generalized lattice (or semidiscrete) Heisenberg magnet (GLHM) model. We define a Darboux transformation on solutions of the Lax pair and on solutions of the spin evolution equation of the GLHM model. The solutions are expressed in terms of quasideterminants. We give a general expression for K-soliton solutions in terms of quasideterminants. Finally, we obtain one- and two-soliton solutions of the GLHM model using quasideterminant properties.
Ключевые слова
Об авторах
H. Wajahat
Department of Physics
Автор, ответственный за переписку.
Email: ahmed.phyy@gmail.com
Пакистан, Lahore
A. Riaz
Department of Physics
Email: ahmed.phyy@gmail.com
Пакистан, Lahore
M. Hassan
Department of Physics
Email: ahmed.phyy@gmail.com
Пакистан, Lahore
Дополнительные файлы
