Darboux Transformation for a Semidiscrete Short-Pulse Equation
- Authors: Wajahat H.1, Riaz A.1, Hassan M.1
-
Affiliations:
- Department of Physics
- Issue: Vol 194, No 3 (2018)
- Pages: 360-376
- Section: Article
- URL: https://journals.rcsi.science/0040-5779/article/view/171669
- DOI: https://doi.org/10.1134/S0040577918030042
- ID: 171669
Cite item
Abstract
We define a Darboux transformation in terms of a quasideterminant Darboux matrix on the solutions of a semidiscrete short-pulse equation. We also give a quasideterminant formula for N-loop soliton solutions and obtain a general expression for the multiloop solution expressed in terms of quasideterminants. Using quasideterminants properties, we find explicit solutions and as an example compute one- and two-loop soliton solutions in explicit form.
About the authors
H. Wajahat
Department of Physics
Email: ahmed.phyy@gmail.com
Pakistan, Lahore
A. Riaz
Department of Physics
Author for correspondence.
Email: ahmed.phyy@gmail.com
Pakistan, Lahore
M. Hassan
Department of Physics
Email: ahmed.phyy@gmail.com
Pakistan, Lahore
Supplementary files
