Asymptotic behavior of the spectrum of combination scattering at Stokes phonons


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

For a class of polynomial quantum Hamiltonians used in models of combination scattering in quantum optics, we obtain the asymptotic behavior of the spectrum for large occupation numbers in the secondary quantization representation. Hamiltonians of this class can be diagonalized using a special system of polynomials determined by recurrence relations with coefficients depending on a parameter (occupation number). For this system of polynomials, we determine the asymptotic behavior a discrete measure with respect to which they are orthogonal. The obtained limit measures are interpreted as equilibrium measures in extremum problems for a logarithmic potential in an external field and with constraints on the measure. We illustrate the general case with an exactly solvable example where the Hamiltonian can be diagonalized by the canonical Bogoliubov transformation and the special orthogonal polynomials degenerate into the Krawtchouk classical discrete polynomials.

Об авторах

A. Aptekarev

Keldysh Institute of Applied Mathematics

Автор, ответственный за переписку.
Email: aptekaa@keldysh.ru
Россия, Moscow

M. Lapik

Keldysh Institute of Applied Mathematics

Email: aptekaa@keldysh.ru
Россия, Moscow

Yu. Orlov

Keldysh Institute of Applied Mathematics

Email: aptekaa@keldysh.ru
Россия, Moscow

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Pleiades Publishing, Ltd., 2017

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).