🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

Application of the trigonal curve to the Blaszak–Marciniak lattice hierarchy


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We develop a method for constructing algebro-geometric solutions of the Blaszak–Marciniak (BM) lattice hierarchy based on the theory of trigonal curves. We first derive the BM lattice hierarchy associated with a discrete (3×3)-matrix spectral problem using Lenard recurrence relations. Using the characteristic polynomial of the Lax matrix for the BM lattice hierarchy, we introduce a trigonal curve with two infinite points, which we use to establish the associated Dubrovin-type equations. We then study the asymptotic properties of the algebraic function carrying the data of the divisor and the Baker–Akhiezer function near the two infinite points on the trigonal curve. We finally obtain algebro-geometric solutions of the entire BM lattice hierarchy in terms of the Riemann theta function.

About the authors

Xianguo Geng

School of Mathematics and Statistics

Email: xzeng@zzu.edu.cn
China, Zhengzhou

Xin Zeng

School of Mathematics and Statistics

Author for correspondence.
Email: xzeng@zzu.edu.cn
China, Zhengzhou

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Pleiades Publishing, Ltd.