Soliton surfaces in the generalized symmetry approach


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We investigate some features of generalized symmetries of integrable systems aiming to obtain the Fokas–Gel’fand formula for the immersion of two-dimensional soliton surfaces in Lie algebras. We show that if there exists a common symmetry of the zero-curvature representation of an integrable partial differential equation and its linear spectral problem, then the Fokas–Gel’fand immersion formula is applicable in its original form. In the general case, we show that when the symmetry of the zero-curvature representation is not a symmetry of its linear spectral problem, then the immersion function of the two-dimensional surface is determined by an extended formula involving additional terms in the expression for the tangent vectors. We illustrate these results with examples including the elliptic ordinary differential equation and the CPN−1 sigma-model equation.

作者简介

A. Grundland

Centre de Recherches Mathématiques Université de Montréal; Département de Mathématiques et d’Informatique Université du Québec à Trois-Rivières

编辑信件的主要联系方式.
Email: grundlan@crm.umontreal.ca
加拿大, Montréal; Trois-Rivières

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2016