Soliton surfaces in the generalized symmetry approach
- 作者: Grundland A.M.1,2
-
隶属关系:
- Centre de Recherches Mathématiques Université de Montréal
- Département de Mathématiques et d’Informatique Université du Québec à Trois-Rivières
- 期: 卷 188, 编号 3 (2016)
- 页面: 1322-1333
- 栏目: Article
- URL: https://journals.rcsi.science/0040-5779/article/view/170755
- DOI: https://doi.org/10.1134/S004057791609004X
- ID: 170755
如何引用文章
详细
We investigate some features of generalized symmetries of integrable systems aiming to obtain the Fokas–Gel’fand formula for the immersion of two-dimensional soliton surfaces in Lie algebras. We show that if there exists a common symmetry of the zero-curvature representation of an integrable partial differential equation and its linear spectral problem, then the Fokas–Gel’fand immersion formula is applicable in its original form. In the general case, we show that when the symmetry of the zero-curvature representation is not a symmetry of its linear spectral problem, then the immersion function of the two-dimensional surface is determined by an extended formula involving additional terms in the expression for the tangent vectors. We illustrate these results with examples including the elliptic ordinary differential equation and the CPN−1 sigma-model equation.
作者简介
A. Grundland
Centre de Recherches Mathématiques Université de Montréal; Département de Mathématiques et d’Informatique Université du Québec à Trois-Rivières
编辑信件的主要联系方式.
Email: grundlan@crm.umontreal.ca
加拿大, Montréal; Trois-Rivières
补充文件
