Principles of diet therapy for sarcopenic obesity: A review
- Authors: Pavlovskaya Е.V.1,2, Kislyak O.A.3, Starodubova A.V.1,3
-
Affiliations:
- Federal Research Center for Nutrition, Biotechnology and Food Safety
- Russian Medical Academy of Continuous Professional Education
- Pirogov Russian National Research Medical University (Pirogov University)
- Issue: Vol 97, No 7 (2025)
- Pages: 571-579
- Section: Reviews
- URL: https://journals.rcsi.science/0040-3660/article/view/314006
- DOI: https://doi.org/10.26442/00403660.2025.07.203270
- ID: 314006
Cite item
Full Text
Abstract
Nutrition and physical activity play a key role in the onset and progression of sarcopenic obesity (SO). Therefore, dietary interventions are essential in comprehensive programs to prevent and treat this condition. The classic approach to obesity diet therapy, which is to reduce the caloric value of the diet, is associated with a decrease in body weight due to both fat and fat-free components. In elderly patients with SO, a reduction in body weight impacts not only the muscle mass but also muscle function. A promising approach to diet therapy for this type of obesity is qualitative modification of the diet structure used for weight loss. The clinical role of specific components of diets, foods, and overall dietary patterns that are effective for CO treatment remains poorly understood. Sufficient intake of high-quality protein and branched-chain amino acids is known to stabilize and increase muscle mass, and recommended protein intakes in patients with SO of different ages continue to be discussed. It has been shown that in the elderly and senile age, the need for energy decreases; however, the need for protein increases. The role of ù-3 polyunsaturated fatty acids, vitamin D, calcium, and polyphenols in the treatment of SO may be due to their anti-inflammatory effect, as well as, possibly, activation of mitochondrial functions and regulation of myogenesis processes. Developing and using specialized foods containing proteins, branched-chain amino acids, and other key nutrients can improve the effectiveness of SO therapy. The review summarizes modern nutritional approaches to SO.
Keywords
Full Text
##article.viewOnOriginalSite##About the authors
Е. V. Pavlovskaya
Federal Research Center for Nutrition, Biotechnology and Food Safety; Russian Medical Academy of Continuous Professional Education
Author for correspondence.
Email: elena_pavlovsky@rambler.ru
ORCID iD: 0000-0002-4505-397X
д-р мед. наук, вед. науч. сотр. отд-ния педиатрической гастроэнтерологии, гепатологии и диетотерапии, проф. каф. диетологии и нутрициологии
Russian Federation, Moscow; MoscowO. A. Kislyak
Pirogov Russian National Research Medical University (Pirogov University)
Email: elena_pavlovsky@rambler.ru
ORCID iD: 0000-0002-2028-8748
д-р мед. наук, проф., проф. каф. факультетской терапии Института клинической медицины
Russian Federation, MoscowA. V. Starodubova
Federal Research Center for Nutrition, Biotechnology and Food Safety; Pirogov Russian National Research Medical University (Pirogov University)
Email: elena_pavlovsky@rambler.ru
ORCID iD: 0000-0001-9262-9233
д-р мед. наук, доц., зам. дир. по научной и лечебной работе, зав. каф. факультетской терапии Института клинической медицины
Russian Federation, Moscow; MoscowReferences
- Donini LM, Busetto L, Bischoff SC, et al. Definition and diagnostic criteria for sarcopenic obesity: ESPEN and EASO Consensus Statement. Obes Facts. 2022;15(3):321-35. doi: 10.1159/000521241
- Di Pino A, DeFronzo RA. Insulin resistance and atherosclerosis: Implications for insulin-sensitizing agents. Endocr Rev. 2019;40(6):1447-67. doi: 10.1210/er.2018-00141
- Chung GE, Park HE, Lee H, et al. Sarcopenic obesity is significantly associated with coronary artery calcification. Front Med (Lausanne). 2021;8:651961. doi: 10.3389/fmed.2021.651961
- Sato R, Okada K, Akiyama E, et al. Impact of sarcopenic obesity on long-term clinical outcomes after ST-segment elevation myocardial infarction. Atherosclerosis. 2021;335:135-41. doi: 10.1016/j.atherosclerosis.2021.08.038
- Yoo JH, Park SW, Jun JE, et al. Relationship between low skeletal muscle mass, sarcopenic obesity and left ventricular diastolic dysfunction in Korean adults. Diabetes Metab Res Rev. 2021;37(1):e3363. doi: 10.1002/dmrr.3363
- Farmer RE, Mathur R, Schmidt AF, et al. Associations between measures of sarcopenic obesity and risk of cardiovascular disease and mortality: A cohort study and mendelian randomization analysis using the UK Biobank. J Am Heart Assoc. 2019;8(13):e011638. doi: 10.1161/JAHA.118.011638
- Wagenaar CA, Dekker LH, Navis GJ. Prevalence of sarcopenic obesity and sarcopenic overweight in the general population: The lifelines cohort study. ClinNutr. 2021;40(6):4422-9. doi: 10.1016/j.clnu.2021.01.005
- Мисникова И.В., Ковалева Ю.А., Климина Н.А. Саркопеническое ожирение. Русский медицинский журнал. 2017;(1):24-9 [Misnikova IV, Kovaleva YuA, Klimina NA. Sarcopenic obesity. Russian Medical Journal. 2017;(1):24-9 (in Russian)].
- Purcell SA, Mackenzie M, Barbosa-Silva TG, et al. Prevalence of sarcopenic obesity using different definitions and the relationship with strength and physical performance in the Canadian Longitudinal Study of Aging. Front Physiol. 2021;11:583825. doi: 10.3389/fphys.2020.583825
- Gao Q, Mei F, Shang Y, et al. Global prevalence of sarcopenic obesity in older adults: A systematic review and meta-analysis. Clin Nutr. 2021;40(7):4633-41. doi: 10.1016/j.clnu.2021.06.009
- von Haehling S, Anker SD. Treatment of cachexia: An overview of recent developments. J Am Med Dir Assoc. 2014;15(12):866-72. doi: 10.1016/j.jamda.2014.09.007
- Lee SJ. Myostatin: A skeletal muscle chalone. Annu Rev Physiol. 2023;85:269-91. doi: 10.1146/annurev-physiol-012422-112116
- Cai Z, Liu D, Yang Y, et al. The role and therapeutic potential of stem cells in skeletal muscle in sarcopenia. Stem Cell Res Ther. 2022;13(1):28. doi: 10.1186/s13287-022-02706-5
- O’Connell MD, Roberts SA, Srinivas-Shankar U, et al. Do the effects of testosterone on muscle strength, physical function, body composition, and quality of life persist six months after treatment in intermediate-frail and frail elderly men? J Clin Endocrinol Metab. 2011;96(2):454-8. doi: 10.1210/jc.2010-1167
- Ng Tang Fui M, Prendergast LA, Dupuis P, et al. Effects of testosterone treatment on body fat and lean mass in obese men on a hypocaloric diet: A randomized controlled trial. BMC Med. 2016;14(1):153. doi: 10.1186/s12916-016-0700-9
- Нутрициология и клиническая диетология. Под ред. В.А. Тутельяна, Д.Б. Никитюка. М.: ГЭОТАР-Медиа, 2020 (Серия «Национальные руководства») [Nutritsiologiia i klinicheskaia dietologiia. Pod red. VA Tutel'iana, DB Nikitiuka. Moscow: GEOTAR-Media, 2020 (Seriia «Natsional'nye rukovodstva») (in Russian)].
- О мерах по совершенствованию лечебного питания в лечебно-профилактических учреждениях Российской Федерации: приказ Минздрава России №330 от 05.08.2003. Режим доступа: https://base.garant.ru/12132439/?ysclid=ma0wd4tag1495515658. Ссылка активна на 16.01.2025 [O merakh po sovershenstvovaniiu lechebnogo pitaniia v lechebno-profilakticheskikh uchrezhdeniiakh Rossiiskoi Federatsii: prikaz Minzdrava Rossii No. 330 ot 05.08.2003. Available at: https://base.garant.ru/12132439/?ysclid=ma0wd4tag1495515658. Accessed: 16.01.2025 (in Russian)].
- Стародубова А.В., Вараева Ю.Р., Косюра С.Д., Ливанцова Е.Н. Проблемы оптимального питания пациентов пожилого и старческого возраста с коморбидной патологией на фоне ожирения. Терапевтический архив. 2019;91(10):19-27 [Starodubova AV, Varaeva YuR, Kosyura SD, Livantsova EN. Problems of optimal nutrition of elderly and senile patients with comorbidities against obesity. Terapevticheskii Arkhiv (Ter. Arkh.). 2019;91(10):19-27 (in Russian)]. doi: 10.26442/00403660.2019.10.000143
- Hita-Contreras F, Bueno-Notivol J, Martínez-Amat A, et al. Effect of exercise alone or combined with dietary supplements on anthropometric and physical performance measures in community-dwelling elderly people with sarcopenic obesity: A meta-analysis of randomized controlled trials. Maturitas. 2018;116:24-35. doi: 10.1016/j.maturitas.2018.07.007
- Bužga M, Pekar M, Uchytil J, et al. Prevention of sarcopenia in patients with obesity after bariatric and metabolic surgery: The effect of programmed training on the muscle tissue and anthropometric functions – A randomized controlled trial (SarxOb study protocol). Biomol Biomed. 2023;23(2):191-7. doi: 10.17305/bjbms.2022.7786
- Morley JE, Argiles JM, Evans WJ, et al. Society for sarcopenia, cachexia, and wasting disease. Nutritional Recommendations for the Management of Sarcopenia. J Am Med Dir Assoc. 2010;11(6):391-6. doi: 10.1016/j.jamda.2010.04.014
- Bauer J, Biolo G, Cederholm T, et al. Evidence-based recommendations for optimal dietary protein intake in older people: A position paper from the PROT-AGE Study Group. J Am Med Dir Assoc. 2013;14(8):542-59. doi: 10.1016/j.jamda.2013.05.021
- Volkert D, Beck AM, Cederholm T, et al. ESPEN practical guideline: Clinical nutrition and hydration in geriatrics. Clinical Nutrition (Edinburgh, Scotland). 2022;41(4):958-89. doi: 10.1016/j.clnu.2022.01.024
- Нормы физиологических потребностей в энергии и пищевых веществах для различных групп населения Российской Федерации. Методические рекомендации Минздрава России 2.3.1.0253–21. М.: Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека, 2021 [Normy fiziologicheskikh potrebnostei v energii i pishchevykh veshchestvakh dlia razlichnykh grupp naseleniia Rossiiskoi Federatsii. Metodicheskie rekomendatsii Minzdrava Rossii 2.3.1.0253–21. Moscow: Federal'naia sluzhba po nadzoru v sfere zashchity prav potrebitelei i blagopoluchiia cheloveka, 2021 (in Russian)].
- Jang YJ. The effects of protein and supplements on sarcopenia in human clinical studies: how older adults should consume protein and supplements. J Microbiol Biotechnol. 2023;33(2):143-50. doi: 10.4014/jmb.2210.10014
- Kamińska MS, Rachubińska K, Grochans S, et al. The impact of whey protein supplementation on sarcopenia progression among the elderly: A systematic review and meta-analysis. Nutrients. 2023;15(9):2039. doi: 10.3390/nu15092039
- Nunes EA, Colenso-Semple L, McKellar SR, et al. Systematic review and meta-analysis of protein intake to support muscle mass and function in healthy adults. J Cachexia Sarcopenia Muscle. 2022;13(2):795-810. doi: 10.1002/jcsm.12922
- Cheah KJ, Cheah LJ. Benefits and side effects of protein supplementation and exercise in sarcopenic obesity: A scoping review. Nutr J. 2023;22(1):52. doi: 10.1186/s12937-023-00880-7
- Martone AM, Marzetti EAO, Calvani R, et al. Exercise and protein intake: a synergistic approach against sarcopenia. Biomed Res Int. 2017;2017:2672435. doi: 10.1155/2017/2672435
- Li L, He Y, Jin N, et al. Effects of protein supplementation and exercise on delaying sarcopenia in healthy older individuals in asian and non-asian countries: A systematic review and meta-analysis. Food Chem X. 2022;13:100210. doi: 10.1016/j.fochx.2022.100210
- Nabuco HCG, Tomeleri CM, Fernandes RR, et al. Effect of whey protein supplementation combined with resistance training on body composition, muscular strength, functional capacity, and plasma-metabolism biomarkers in older women with sarcopenic obesity: A randomized, double-blind, placebo-controlled trial. Clin Nutr ESPEN. 2019;32:88-95. doi: 10.1016/j.clnesp.2019.04.007
- Liao CD, Tsauo JY, Wu YT, et al. Effects of protein supplementation combined with resistance exercise on body composition and physical function in older adults: A systematic review and metaanalysis. Am J Clin Nutr. 2017;106(4):1078-91. doi: 10.3945/ajcn.116.143594
- Vliet V, Burd NA, van Loon LJ. The skeletal muscle anabolic response to plant- versus animal-based protein consumption. J Nutr. 2015;145(9):1981-91. doi: 10.3945/jn.114.204305
- Wall BT, Hamer HM, de Lange A, et al. Leucine co-ingestion improves post-prandial muscle protein accretion in elderly men. Clin Nutr. 2013;32(3):412-9. doi: 10.1016/j.clnu.2012.09.002
- Lee SY, Lee HJ, Lim JY. Effects of leucine-rich protein supplements in older adults with sarcopenia: A systematic review and meta-analysis of randomized controlled trials. Arch Gerontol Geriatr. 2022;102:104758. doi: 10.1016/j.archger.2022.104758
- Gilmartin S, O’Brien N, Giblin LA-O. Whey for sarcopenia: Can whey peptides, hydrolysates or proteins play a beneficial role? Foods. 2020;9(6):750. doi: 10.3390/foods9060750
- Курмаев Д.П., Булгакова С.В., Тренева Е.В., и др. Возможности применения аминокислот с разветвленными боковыми цепями (BCAA) для лечения и профилактики саркопении у пациентов пожилого и старческого возраста (обзор литературы). Acta Biomedica Scientifica. 2023;8(3):106-14 [Kurmayev DP, Bulgakova SV, Treneva EV, et al. Possibilities of using branched-chain amino acids for the treatment and prevention of sarcopenia in elderly and old patients (literature review). Acta Biomedica Scientifica. 2023;8(3):106-14 (in Russian)]. doi: 10.29413/ABS.2023-8.3.11
- Cruz B, Oliveira A, Viana LR, et al. Leucine-rich diet modulates the metabolomic and proteomic profile of skeletal muscle during cancer cachexia. Cancers. 2020;12(7):1880. doi: 10.3390/cancers12071880
- Borack MS, Volpi E. Efficacy and safety of leucine supplementation in the elderly. J Nutr. 2016;146(12):2625S-9S. doi: 10.3945/jn.116.230771
- Xu Z-R, Tan Z-J, Zhang Q, et al. The effectiveness of leucine on muscle protein synthesis, lean body mass and leg lean mass accretion in older people: A systematic review and meta-analysis. Br J Nutr. 2015;113(1):25-34. doi: 10.1017/S0007114514002475
- Kim H, Kim M, Kojima N, et al. Exercise and nutritional supplementation on community-dwelling elderly Japanese women with sarcopenic obesity: A randomized controlled trial. J Am Med Dir Assoc. 2016;17(11):1011-9. doi: 10.1016/j.jamda.2016.06.016
- Kemmler W, Kohl M, Freiberger E, et al. Effect of whole-body electromyostimulation and / or protein supplementation on obesity and cardiometabolic risk in older men with sarcopenic obesity: The randomized controlled FranSO trial. BMC Geriatr. 2018;18(1):70. doi: 10.1186/s12877-018-0759-6
- Camajani E, Persichetti A, Watanabe MA-O, et al. Whey protein, L-leucine and vitamin D supplementation for preserving lean mass during a low-calorie diet in sarcopenic obese women. Nutrients. 2022;14(9):1884. doi: 10.3390/nu14091884
- Cereda E, Pisati R, Rondanelli M, Caccialanza R. Whey protein, leucine- and vitamin-D-enriched oral nutritional supplementation for the treatment of sarcopenia. Nutrients. 2022;14(7):1524. doi: 10.3390/nu14071524
- Чехонина Ю.Г., Гаппарова К.М., Ворожко И.В., Сокольников А.А. Оценка эффективности диетотерапии с модификацией белкового компонента у пациентов пожилого возраста с ожирением. Вопросы диетологии. 2022;12(4):5-10 [Chekhonina YuG, Gapparova KM, Vorozhko IV, Sokolnikov AA. Evaluation of the effectiveness of diet therapy with protein modification in elderly patients with obesity. Nutrition. 2022;12(4):5-10 (in Russian)]. doi: 10.20953/2224-5448-2022-4-5-10
- Микаелян А.А., Вараева Ю.Р., Лискова Ю.В., и др. Саркопения и хроническая сердечная недостаточность. Часть 2. Лечебное дело. 2023;3:42-9 [Mikaelyan AA, Varaeva YuR, Liskova YuV, et al. Sarcopenia and chronic heart failure. Part 2. Lechebnoe Delo. 2023;3:42-9 (in Russian)]. doi: 10.24412/2071-5315-2023-12984
- Soni N, Ross AB, Scheers N, et al. The omega-3 fatty acids EPA and DHA, as a part of a murine high-fat diet, reduced lipid accumulation in brown and white adipose tissues. Int J Mol Sci. 2019;20(23):5895. doi: 10.3390/ijms20235895
- Lee MS, Shin Y, Moon S, et al. Effects of eicosapentaenoic acid and docosahexaenoic acid on mitochondrial DNA replication and PGC-1alpha gene expression in C(2)C(12) muscle cells. Prev Nutr Food Sci. 2016;21(4):317-22. doi: 10.3746/pnf.2016.21.4.317
- Felix-Soriano E, Sainz N, Fernandez-Galilea M, et al. Chronic docosahexaenoic acid supplementation improves metabolic plasticity in subcutaneous adipose tissue of aged obese female mice. J Nutr Biochem. 2023;111:109153. doi: 10.1016/j.jnutbio.2022.109153
- Ochi E, Tsuchiya Y. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in muscle damage and function. Nutrients. 2018;10(5):552. doi: 10.3390/nu10050552
- Castillero E, Martin AI, Lopez-Menduina M, et al. Eicosapentaenoic acid attenuates arthritis-induced muscle wasting acting on atrogin-1 and on myogenic regulatory factors. Am J Physiol Regul Integr Comp Physiol. 2009;297(5):R1322-31. doi: 10.1152/ajpregu.00388.2009
- LeMieux MJ, Kalupahana NS, Scoggin S, Moustaid-Moussa N. Eico sapentaenoic acid reduces adipocyte hypertrophy and inflammation in diet-induced obese mice in an adiposity-independent manner. J Nutr. 2015;145(3):411-7. doi: 10.3945/jn.114.202952
- Thach TT, Wu C, Hwang K, Lee SJ. Azelaic acid induces mitochondrial biogenesis in skeletal muscle by activation of olfactory receptor 544. Front Physiol. 2020;11:329. doi: 10.3389/fphys.2020.00329
- Ukropec J, Reseland JE, Gašperíková D, et al. The hypotriglyceridemic effect of dietary n-3 FA is associated with increased-oxidation and reduced leptin expression. Lipids. 2003;38(10):1023-9. doi: 10.1007/s11745-006-1156-z
- Yang W, Lee JW, Kim Y, et al. Increased omega-3 fatty acid intake is inversely associated with sarcopenic obesity in women but not in men, based on the 2014–2018 Korean National Health and Nutrition Examination Survey. J Clin Med. 2020;9(12):3856. doi: 10.3390/jcm9123856
- Cipriani C, Pepe J, Piemonte S, et al. Vitamin D and its relationship with obesity and muscle. Int J Endocrinol. 2014;2014:841248. doi: 10.1155/2014/841248
- de Brito Galvao JF, Nagode LA, Schenck PA, Chew DJ. Calcitriol, calcidiol, parathyroid hormone, and fibroblast growth factor-23 interactions in chronic kidney disease. J Vet Emerg Crit Care (San Antonio). 2013;23(2):134-62. doi: 10.1111/vec.12036
- Khundmiri SJ, Murray RD, Lederer E. PTH and Vitamin D. Compr Physiol. 2016;6(2):561-601. doi: 10.1002/cphy.c140071
- Kim YC, Ki SW, Kim H, et al. Recent advances in nutraceuticals for the treatment of sarcopenic obesity. Nutrients. 2023;15(17):3854. doi: 10.3390/nu15173854
- Di Filippo L, De Lorenzo R, Giustina A, et al. Vitamin D in osteosarcopenic obesity. Nutrients. 2022;14(9):1816. doi: 10.3390/nu14091816
- Hassan-Smith ZK, Jenkinson C, Smith DJ, et al. 25-hydroxyvitamin D3 and 1,25-dihydroxyvitamin D3 exert distinct effects on human skeletal muscle function and gene expression. PLoS One. 2017;12(2):e0170665. doi: 10.1371/journal.pone.0170665
- Prokopidis K, Giannos P, Katsikas Triantafyllidis K, et al. Effect of vitamin D monotherapy on indices of sarcopenia in community-dwelling older adults: A systematic review and meta-analysis. J Cachexia Sarcopenia Muscle. 2022;13(3):1642-52. doi: 10.1002/jcsm.12976
- Gkekas NK, Anagnostis P, Paraschou V, et al. The effect of vitamin D plus protein supplementation on sarcopenia: A systematic review and meta-analysis of randomized controlled trials. Maturitas. 2021;145:56-63. doi: 10.1016/j.maturitas.2021.01.002
- Giustina A, Bouillon R, Dawson-Hughes B, et al. Vitamin D in the older population: A consensus statement. Endocrine. 2023;79(1):31-44. doi: 10.1007/s12020-022-03208-3
- Rønning SB, Pedersen ME, Berg RS, et al. Vitamin K2 improves proliferation and migration of bovine skeletal muscle cells in vitro. PLoS One. PLoS One. 2018;13(4):e0195432. doi: 10.1371/journal.pone.0195432
- Tieland M,Trouwborst I, Clark BC. Skeletal muscle performance and ageing. J Cachexia Sarcopenia Muscle. 2018;9(1):3-19. doi: 10.1002/jcsm.12238
- Kirk B, Zanker J, Duque G. Osteosarcopenia: Epidemiology, diagnosis, and treatment-facts and numbers. J Cachexia Sarcopenia Muscle. 2020;11(3):609-18. doi: 10.1002/jcsm.12567
- van Dronkelaar C, van Velzen A, Abdelrazek M, et al. Minerals and sarcopenia; The role of calcium, iron, magnesium, phosphorus, potassium, selenium, sodium, and zinc on muscle mass, muscle strength, and physical performance in older adults: A systematic review. J Am Med Dir Assoc. 2018;19(1):6-11.e3. doi: 10.1016/j.jamda.2017.05.026
- Welch AA, Kelaiditi E, Jennings A, et al. Dietary magnesium is positively associated with skeletal muscle power and indices of muscle mass and may attenuate the association between circulating C-reactive protein and muscle mass in Women. J Bone Miner Res. 2016;31(2):317-25. doi: 10.1002/jbmr.2692
- Petermann-Rocha F, Chen M, Gray SR, et al. Factors associated with sarcopenia: A cross-sectional analysis using UK Biobank. Maturitas. 2020;133:60-7. doi: 10.1016/j.maturitas.2020.01.004
- Abiri B, Hosseinpanah F, Seifi Z, et al. The implication of nutrition on the prevention and improvement of age-related sarcopenic obesity: A systematic review. J Nutr Health Aging. 2023;27(10):842-52. doi: 10.1007/s12603-023-1986-x
- Son J, Yu Q, Seo JS. Sarcopenic obesity can be negatively associated with active physical activity and adequate intake of some nutrients in Korean elderly: Findings from the Korea National Health and Nutrition Examination Survey (2008–2011). Nutr Res Pract. 2019;13(1):47-57. doi: 10.4162/nrp.2019.13.1.47
- Semba RD, Blaum C, Guralnik JM, et al. Carotenoid and vitamin E status are associated with indicators of sarcopenia among older women living in the community. Aging Clin Exp Res. 2003;15(6):482-7. doi: 10.1007/BF03327377
- Cailleaux PE, Déchelotte P, Coëffier M. Novel dietary strategies to manage sarcopenia. Curr Opin Clin Nutr Metab Care. 2024;27(3):234-43. doi: 10.1097/MCO.0000000000001023
- Chen H, Wu D, Chen Y, et al. Association between the composite dietary antioxidant index and sarcopenia among United States adults: A cross-sectional study. JPEN J Parenter Enteral Nutr. 2025;49(1):103-11. doi: 10.1002/jpen.2697
- Alway SE, Bennett BT, Wilson JC, et al. Green tea extract attenuates muscle loss and improves muscle function during disuse, but fails to improve muscle recovery following unloading in aged rats. J Appl Physiol (1985). 2015;118(3):319-30. doi: 10.1152/japplphysiol.00674.2014
- da Silva W, Machado AS, Souza MA, et al. Effect of green tea extract supplementation on exercise-induced delayed onset muscle soreness and muscular damage. Physiol Behav. 2018;194:77-82. doi: 10.1016/j.physbeh.2018.05.006
- Ueda-Wakagi M, Hayashibara K, Nagano T, et al. Epigallocatechin gallate induces GLUT4 translocation in skeletal muscle through both PI3K- and AMPK-dependent pathways. Food Funct. 2018;9(8):4223-33. doi: 10.1039/c8fo00807h
- Casanova E, Salvado J, Crescenti A, Gibert-Ramos A. Epigallocatechin gallate modulates muscle homeostasis in type 2 diabetes and obesity by targeting energetic and redox pathways: A narrative review. Int J Mol Sci. 2019;20(3):532. doi: 10.3390/ijms20030532
- Bagheri R, Rashidlamir A, Ashtary-Larky D, et al. Effects of green tea extract supplementation and endurance training on irisin, pro-inflammatory cytokines, and adiponectin concentrations in overweight middle-aged men. Eur J Appl Physiol. 2020;120(4):915-23. doi: 10.1007/s00421-020-04332-6
- Sabarathinam S, Rajappan Chandra SK, Satheesh S. Network pharmacology based pharmacokinetic assessment and evaluation of the therapeutic potential of catechin derivatives as a potential myostatin inhibitor: A special view on Sarcopenic Obesity. Nat Prod Res. 2023;38(5):856-60. doi: 10.1080/14786419.2023.2191197
- Mafi F, Biglari S, Ghardashi Afousi A, Gaeini AA. Improvement in Skeletal Muscle Strength and Plasma Levels of Follistatin and Myostatin Induced by an 8-Week Resistance Training and Epicatechin Supplementation in Sarcopenic Older Adults. J Aging Phys Act. 2019;27(3):384-91. doi: 10.1123/japa.2017-0389
- Sepulveda PV, Lamon S, Hagg A, et al. Evaluation of follistatin as a therapeutic in models of skeletal muscle atrophy associated with denervation and tenotomy. Sci Rep. 2015;5:17535. doi: 10.1038/srep17535
- Liu HW, Chen YJ, Chang YC, Chang SJ. Oligonol, a low-molecularweight polyphenol derived from lychee, alleviates muscle loss in diabetes by suppressing atrogin-1 and MuRF1. Nutrients. 2017;9(9):1040. doi: 10.3390/nu9091040
- Chang YC, Chen YT, Liu HW, et al. Oligonol alleviates sarcopenia by regulation of signaling pathways involved in protein turnover and mitochondrial quality. Mol Nutr Food Res. 2019;63(10):e1801102. doi: 10.1002/mnfr.201801102
- Bahijri SM, Ajabnoor G, Hegazy GA, et al. Supplementation with oligonol, prevents weight gain and improves lipid profile in overweight and obese saudi females. Curr Nutr Food Sci. 2018;14(2):164-70. doi: 10.2174/1573401313666170609101408
- Kim JH, Lee H, Kim JM, et al. Effect of oligonol, a lychee-derived polyphenol, on skeletal muscle in ovariectomized rats by regulating body composition, protein turnover, and mitochondrial quality signaling. Food Sci Nutr. 2022;10(4):1184-94. doi: 10.1002/fsn3.2750
- Yahyazadeh, R, Ghasemzadeh Rahbardar M, Razavi BM, et al. The effect of Elettaria cardamomum (cardamom) on the metabolic syndrome: Narrative review. Iran J Basic Med Sci. 2021;24(11):1462-9. doi: 10.22038/IJBMS.2021.54417.12228
- Daneshi-Maskooni M, Keshavarz SA, Qorbani M, et al. Green cardamom supplementation improves serum irisin, glucose indices, and lipid profiles in overweight or obese non-alcoholic fatty liver disease patients: A double-blind randomized placebo-controlled clinical trial. BMC Complement Altern Med. 2019;19(1):59. doi: 10.1186/s12906-019-2465-0
- Sousa GM, Cazarin CBB, Marostica Junior MR, et al. The effect of alpha-terpineol enantiomers on biomarkers of rats fed a high-fat diet. Heliyon. 2020;6(4):e03752. doi: 10.1016/j.heliyon.2020.e03752
- Soundharrajan I, Kim DH, Srisesharam S, et al. Limonene promotes osteoblast differentiation and 2-deoxy-d-glucose uptake through p38MAPK and Akt signaling pathways in C2C12 skeletal muscle cells. Phytomedicine. 2018;45:41-8. doi: 10.1016/j.phymed.2018.03.019
- Santos MMB, Filho LFS, De Souza JB, et al. Topical application of (S)-(-)-limonene is as effective as phonophoresis for improving oxidative parameters of injured skeletal muscle in rats. Naunyn Schmiedebergs Arch Pharmacol. 2020;393(12):2293-300. doi: 10.1007/s00210-020-01941-y
- Kim J, Lee Y, Kye S, et al. Association of vegetables and fruits consumption with sarcopenia in older adults: The Fourth Korea National Health and Nutrition Examination Survey. Age Ageing. 2015;44(1):96-102. doi: 10.1093/ageing/afu028
- Hong SH, Bae YJ. Association of dietary vegetable and fruit consumption with sarcopenia: a systematic review and meta-analysis. Nutrients. 2024;16(11):1707. doi: 10.3390/nu16111707
- Mazza E, Ferro Y, Maurotti S, et al. Association of dietary patterns with sarcopenia in adults aged 50 years and older. Eur J Nutr. 2024;63(5):1651-62. doi: 10.1007/s00394-024-03370-6
- Liu C, Cheung WH, Li J, et al. Understanding the gut microbiota and sarcopenia: A systematic review. J Cachexia Sarcopenia Muscle. 2021;12(6):1393-407. doi: 10.1002/jcsm.12784
- Bilski J, Pierzchalski P, Szczepanik M, et al. Multifactorial mechanism of sarcopenia and sarcopenic obesity. Role of physical exercise, microbiota and myokines. Cells. 2022;11(1):160. doi: 10.3390/cells11010160
- Xu J, Hu Q, Li J, et al. Effects of non-pharmacological interventions on patients with sarcopenic obesity: A meta-analysis. PLoS One. 2023;18(8):e0290085. doi: 10.1371/journal.pone.0290085
- Alizadeh Pahlavani H. Exercise therapy for people with sarcopenic obesity: Myokines and adipokines as effective actors. Front Endocrinol (Lausanne). 2022;13:811751. doi: 10.3389/fendo.2022.811751
- Ожирение. Клинические рекомендации. 2024. Режим доступа: https://cr.minzdrav.gov.ru/preview-cr/28_3. Ссылка активна на 16.01.2025 [Ozhirenie. Klinicheskie rekomendatsii. 2024. Available at: https://cr.minzdrav.gov.ru/preview-cr/28_3. Accessed: 16.01.2025 (in Russian)].
- Рекомендации ВОЗ по вопросам физической активности и малоподвижного образа жизни. Краткий обзор. Женева: Всемирная организация здравоохранения, 2021 [Rekomendatsii VOZ po voprosam fizicheskoi aktivnosti i malopodvizhnogo obraza zhizni. Kratkii obzor. Zheneva: Vsemirnaia organizatsiia zdravookhraneniia, 2021 (in Russian)].
- Поленова Н.В., Вараева Ю.Р., Погонченкова И.В., и др. Физическая активность при саркопении: реабилитационные подходы в профилактике и лечении возрастной патологии мышечной ткани. Вопросы курортологии, физиотерапии и лечебной физической культуры. 2023;100(2):52-60 [Polenova NV, Varaeva YuR, Pogonchenkova IV, et al. Physical activity in sarcopenia: Rehabilitation approaches in prevention and treatment of age-related muscle disorders. Problems of Balneology, Physiotherapy and Exercise Therapy. 2023;100(2):52-60 (in Russian)]. doi: 10.17116/kurort202310002152
Supplementary files
