Neural networks in the predictive diagnosis of cognitive impairment in type 1 and type 2 diabetes mellitus

Cover Page

Cite item

Full Text

Abstract

Background. Cognitive dysfunction, including mild cognitive impairment and dementia, is increasingly recognized as a serious complication of diabetes mellitus (DM) that affects patient well-being and disease management. Magnetic resonance imaging (MRI)-studies have shown varying degrees of cortical atrophy, cerebral infarcts, and deep white matter lesions. To explain the relationship between DM and cognitive decline, several hypotheses have been proposed, based on the variability of glycemia leading to morphometric changes in the brain. The ability to predict cognitive decline even before its clinical development will allow the early prevention of this pathology, as well as to predict the course of the existing pathology and to adjust medication regimens.

Aim. To create a computer neural network model for predicting the development of cognitive impairment in DM on the basis of brain neuroimaging techniques.

Materials and methods. The study was performed in accordance with the standards of good clinical practice; the protocol was approved by the Ethics Committee. The study included 85 patients with type 1 diabetes and 95 patients with type 2 diabetes, who were divided into a group of patients with normal cognitive function and a group with cognitive impairment. The patient groups were comparable in age and duration of disease. Cognitive impairment was screened using the Montreal Cognitive Assessment Scale. Data for glycemic variability were obtained using continuous glucose monitoring (iPro2, Libre). A standard MRI scan of the brain was performed axially, sagittally, and coronally on a Signa Creator “E”, GE Healthcare, 1.5 Tesla, China. For MRI data processing we used Free Surfer program (USA) for analysis and visualization of structural and functional neuroimaging data from cross-sectional or longitudinal studies, and for segmentation we used Recon-all batch program directly. All statistical analyses and data processing were performed using Statistica Statsofi software (version 10) on Windows 7/XP Pro operating systems. The IBM WATSON cognitive system was used to build a neural network model.

Results. As a result of the study, cognitive impairment in DM type 1was predominantly of mild degree 36.9% (n=24) and moderate degree 30.76% (n=20), and in DM type 2 – mild degree 37% (n=30), moderate degree 49.4% (n=40) and severe degree 13.6% (n=11). Cognitive functions in DM type 1 were impaired in memory and attention, whereas in DM type 2 they were also impaired in tasks of visual-constructive skills, fluency, and abstraction (p<0.001). The analysis revealed differences in glycemic variability indices in patients with type 1 and type 2 DM and cognitive impairment. Standard MRI of the brain recorded the presence of white and gray matter changes (gliosis and leukoareosis). General and regional cerebral atrophy is characteristic of type 1 and type 2 DM, which is associated with dysglycemia. When building neural network models for type 1 diabetes, the parameters of decreased volumes of the brain regions determine the development of cognitive impairment by 93.5%, whereas additionally, the coefficients of glycemic variability by 98.5%. The same peculiarity was revealed in type 2 DM – 95.3% and 97.9%, respectively.

Conclusion. In DM type 1 and type 2 with cognitive impairment, elevated coefficients of glycemic variability are more frequently recorded. This publication describes laboratory and instrumental parameters as potential diagnostic options for effective management of DM and prevention of cognitive impairment. Neural network models using glycemic variability coefficients and MR morphometry allow for predictive diagnosis of cognitive disorders in both types of diabetes.

About the authors

Iuliia G. Samoilova

Siberian State Medical University

Email: matveeva.mariia@yandex.ru
ORCID iD: 0000-0002-2667-4842

д-р мед. наук, зав. каф. детских болезней, проф. каф. факультетской терапии с курсом клинической фармакологии ФГБОУ ВО СибГМУ

Russian Federation, Tomsk

Mariia V. Matveeva

Siberian State Medical University

Author for correspondence.
Email: matveeva.mariia@yandex.ru
ORCID iD: 0000-0001-9966-6686

д-р мед. наук, доц. каф. детских болезней, доц. каф. общей врачебной практики и поликлинической терапии ФГБОУ ВО СибГМУ

Russian Federation, Tomsk

Dmitrii A. Kudlay

Sechenov First Moscow State Medical University (Sechenov University); National Research Center – Institute of Immunology

Email: matveeva.mariia@yandex.ru
ORCID iD: 0000-0003-1878-4467

д-р мед. наук, проф. каф. фармакологии Института фармации ФГАОУ ВО «Первый МГМУ им. И.М. Сеченова» (Сеченовский Университет); вед. науч. сотр. лаб. персонализированной медицины и молекулярной иммунологии №71 ФГБУ ГНЦ ИМ

Russian Federation, Moscow

Olga S. Tonkikh

Siberian State Medical University

Email: matveeva.mariia@yandex.ru
ORCID iD: 0000-0003-0589-0260

канд. мед. наук, зав. отд-нием томографических методов ФГБОУ ВО СибГМУ

Russian Federation, Tomsk

Ivan V. Tolmachev

Siberian State Medical University

Email: matveeva.mariia@yandex.ru
ORCID iD: 0000-0002-2888-5539

канд. мед. наук, рук. Целевой поисковой лаборатории медико-инженерных технологий Фонда перспективных исследований, доц. каф. медицинской и биологической кибернетики ФГБОУ ВО СибГМУ

Russian Federation, Tomsk

References

  1. Шарофова М.У., Сагдиева Ш.С., Юсуфи С.Д. Сахарный диабет: современное состояние вопроса (часть 1). Вестник Авиценны. 2019;21(3):502-12 [Sharofova MU, Sagdieva ShS, Jusufi SD. Diabetes mellitus: current status (part 1)]. Avicenna Bulletin. 2019;21(3):502-12 (in Russian)]. doi: 10.25005/2074-0581-2019-21-3-502-512
  2. McCrimmon RJ, Ryan CM, Frier BM. Diabetes and cognitive dysfunction. Lancet. 2012;379:2291-9. doi: 10.1016/S0140-6736(12)60360-2
  3. Kodl CT, Seaquist ER. Cognitive dysfunction and diabetes mellitus. Endocr Rev. 2008;29:494-511. doi: 10.1210/er.2007-0034
  4. Brands AM, Biessels GJ, de Haan EH, et al. The effects of type 1 diabetes on cognitive performance: a meta-analysis. Diab Care. 2005;28:726-35. doi: 10.2337/diacare.28.3.726
  5. Gaudieri PA. Cognitive function in children with type 1 diabetes: a meta-analysis. Diab Care. 2008;31:1892-7. doi: 10.2337/dc07-2132
  6. Biessels GJ. Risk of dementia in diabetes mellitus: a systematic review. Lancet Neurol. 2006;5(1):64-74. doi: 10.1016/S1474-4422(05)70284-2
  7. Van den Berg E, Kloppenborg RP, Kessels RPC, et al. Type 2 diabetes mellitus, hypertension, dyslipidemia and obesity: a systematic comparison of their impact on cognition. Biochim Biophys Acta. 2009;1792(5):470-81. doi: 10.1016/j.bbadis.2008.09.004
  8. Palta P, Schneider ALC, Biessels GJ, et al. Magnitude of cognitive dysfunction in adults with type 2 diabetes: a meta-analysis of six cognitive domains and the most frequently reported neuropsychological tests within domains. J Intl Neuropsychol Soc. 2014;20:278-91. doi: 10.14412/2074-2711-2017-1-90-95
  9. Bogush M, Heldt NA, Persidsky Y. Blood Brain Barrier Injury in Diabetes: Unrecognized Effects on Brain and Cognition. J Neuroimmune Pharmacol. 2017;12(4):593-601. doi: 10.1007/s11481-017-9752-7
  10. Матвеева М.В., Самойлова Ю.Г., Жукова Н.Г., и др. Структурные и функциональные изменения головного мозга при сахарном диабете. Неврология, нейропсихиатрия, психосоматика. 2020;12(3):42-6 [Matveeva MV, Samoilova YuG, Zhukova NG. Neurology, Neuropsychiatry, Psychosomatics. 2020;12(3):42-6 (in Russian)]. doi: 10.14412/2074-2711-2020-3-42-46
  11. Moheet A, Mangia S, Seaquist ER. Impact of diabetes on cognitive function and brain structure. Ann N Y Acad Sci. 2015;1353:60-71. doi: 10.1111/nyas.12807
  12. Wardlaw JM, Smith EE, Biessels GJ, et al; STandards for ReportIng Vascular changes on nEuroimaging (STRIVE v1). Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol. 2013;12(8):822-38. doi: 10.1016/S1474-4422(13)70124-8
  13. Biessels GJ, Reijmer YD. Brain changes underlying cognitive dysfunction in diabetes: what can we learn from MRI? Diabetes. 2014;63(7):2244-52. doi: 10.2337/db14-0348
  14. Wang W, Wong L, Shi L, et al. Association of impaired fasting glucose and Type 2 Diabetes Mellitus with brain volume changes in Alzheimer's Disease patients analyzed by MRI: a retrospective study. Peer J. 2020;8:e9801. doi: 10.7717/peerj.9801
  15. Mazaika PK, Weinzimer SA, Mauras N, et al.; Diabetes Research in Children Network (DirecNet). Variations in Brain Volume and Growth in Young Children With Type 1 Diabetes. Diabetes. 2016;65(2):476-85. doi: 10.2337/db15-1242
  16. Климонтов В.В., Бериков В.Б., Сайк О.В. Искусственный интеллект в диабетологии. Сахарный диабет. 2021;24(2):156-66 [Klimontov VV, Berikov VB, Saik OV. Artificial intelligence in diabetology. Diabetes mellitus. 2021;24(2):156-66 (in Russian)]. doi: 10.14341/DM12665
  17. Ellahham S. Artificial Intelligence: The Future for Diabetes Care. Am J Med. 2020;133(8):895-900. doi: 10.1016/j.amjmed.2020.03.033
  18. Сосина В.Б., Захаров В.В., Строков И.А., Вахнина Н.В. Когнитивные нарушения при сахарном диабете. Неврология, нейропсихиатрия, психосоматика. 2017;9(1):90-5 [Sosina VB, Zakharov VV, Strokov IA, Vakhnina NV. Cognitive impairment in diabetes mellitus. Neurology, Neuropsychiatry, Psychosomatics. 2017;9(1):90-5 (in Russian)]. doi: 10.14412/2074-2711-2017-1-90-95
  19. Arvanitakis Z, Wilson RS, Bienias JL, et al. Diabetes mellitus and risk of Alzheimer disease and decline in cognitive function. Arch Neurol. 2004;61(5):661-6. doi: 10.1001/archneur.61.5.661
  20. Okereke O, Kang JH, Cook NR, et al. Cognitive decline in two large cohorts of communitydwelling older adults. J Am Geriatr Soc. 2008;56(6):1028-36. doi: 10.1111/j.1532-5415.2008.01686.x
  21. Zhen J, Lin T, Huang X, et al. Association of ApoE Genetic Polymorphism and Type 2 Diabetes with Cognition in Non-Demented Aging Chinese Adults: A Community Based Cross-Sectional Study. Aging Dis. 2018;9(3):346-57. doi: 10.14336/AD.2017.0715
  22. Jacobson AM, Paterson AD, Ryan CM, et al.; DCCT/EDIC Research Group. The associations of apolipoprotein E and angiotensin-converting enzyme polymorphisms and cognitive function in Type 1 diabetes based on an 18-year follow-up of the DCCT cohort. Diabet Med. 2010;27(1):15-22. doi: 10.1111/j.1464-5491.2009.02885.x
  23. Самойлова Ю.Г., Ротканк М.А., Жукова Н.Г., и др. Вариабельность гликемии у пациентов с сахарным диабетом 1-го типа: связь с когнитивной дисфункцией и данными магнитно-резонансных методов исследования. Проблемы эндокринологии. 2018;64(5):286-91 [Samoilova YuG, Rotkank MA, Zhukova NG. Variability of glycemia in patients with type 1 diabetes mellitus: the relationship with cognitive dysfunction and the results of magnetic resonance imaging. Problems of Endocrinology. 2018;64(5):286-91 (in Russian)].
  24. Самойлова Ю.Г., Ротканк М.А., Жукова Н.Г., и др. Маркеры когнитивных нарушений и вариабельность гликемии у пациентов с сахарным диабетом 1-го типа. Журнал неврологии и психиатрии им. С.С. Корсакова. 2018;118(4):48-51 [Samoilova Y.G., Rotkank M.A., Zhukova N.G., et al. Markers of cognitive impairment and glycemic variability in patients with type 1 diabetes mellitus. Journal of Neurology and Psychiatry named after S.S. Korsakov. 2018;118(4):48-51 (in Russian)].
  25. Rigla M, García-Sáez G, Pons B, Hernando ME. Artificial Intelligence Methodologies and Their Application to Diabetes. J Diabetes Sci Technol. 2018;12(2):303-10. doi: 10.1177/1932296817710475
  26. Toth C. Diabetes and neurodegeneration in the brain. Handb Clin Neurol. 2014;126:489-511. doi: 10.1016/B978-0-444-53480-4.00035-7
  27. Mayeda ER, Whitmer RA, Yaffe K. Diabetes and cognition. Clin Geriatr Med. 2015;31(1):101-ix. doi: 10.1016/j.cger.2014.08.021
  28. Filip P, Canna A, Moheet A, et al. Structural Alterations in Deep Brain Structures in Type 1 Diabetes. Diabetes. 2020;69(11):2458-66. doi: 10.2337/db19-1100

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. General diagram of neural network construction based on magnetic resonance imaging (MRI) data and glycemic variability: a – diabetes mellitus (DM) 1, glycemic variability vs MRI; b – DM 1, MRI; c – DM 2, MRI; d – DM 2, glycemic variability vs MRI.

Download (162KB)
3. Fig. 2. Importance of signs for model A of DM 1, glycemic variability vs MRI.

Download (72KB)
4. Fig. 3. Neural network model A of DM 1, glycemic variability vs MRI.

Download (147KB)
5. Fig. 4. Importance of signs for model B DM 1, MRI.

Download (84KB)
6. Fig. 5. Neural network model B DM 1, MRI.

Download (146KB)
7. Fig. 6. The importance of signs for model B of DM 2, MRI.

Download (90KB)
8. Fig. 7. Neural network model B of DM 2, MRI.

Download (148KB)
9. Fig. 8. Importance of signs for the G model DM 2, glycemic variability vs MRI.

Download (75KB)
10. Fig. 9. Neural network G model of DM 2, glycemic variability vs MRI.

Download (128KB)

Copyright (c) 2021 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies