Polymorphic variants of glutathione reductase – new genetic markers of predisposition to type 2 diabetes mellitus

Cover Page

Cite item

Full Text

Abstract

Aim. To study the associations of three common single nucleotide variants of the gene encoding antioxidant system enzyme, glutathione reductase GSR with a predisposition to type 2 diabetes (T2D).

Materials and methods. The observational mono-center transverse controlled study involved 1032 type 2 diabetics (640 women, 392 men; mean age 61.1±4.8 years) and 1056 healthy volunteers (676 women, 380 men; mean age 60.9±6.2 years). Eating habits were evaluated retrospectively according to questionnaire data. A 10 ml blood sample was drawn from all participants in the study for genetic and biochemical tests. Genotyping was done with the use of the iPLEX technology on MassArray System.

Results. We first identified the relationship of the polymorphisms rs2551715, rs2911678, rs3757918 of the GSR gene with a reduced risk of developing T2D in the Russian population. At the same time, the protective effects of the variants of the glutathione reductase gene manifested only in individuals with normal body weight provided they consumed fresh vegetables and fruits, whereas in those with insufficient consumption of plant foods, as well as in all overweight and obese patients, the protective effect of GSR was not observed. In patients with T2D, the plasma levels of hydrogen peroxide and the glutathione dimer were sharply increased compared with the controls. We also found that the rs2551715 polymorphism was associated with a lower concentration of hydrogen peroxide in the blood plasma of patients with T2D, while SNP rs2911678 was associated with a decrease in the concentration of the oxidized form of glutathione. Bioinformatical analysis confirmed the positive effect of alternative alleles on GSR expression and revealed the closest protein partners of the enzyme and their joint participation in the metabolism of acetyl-CoA, the catabolism of hydrogen peroxide and the control of cellular redox homeostasis.

Conclusion. Polymorphic variants of the GSR gene rs2551715, rs2911678, rs3757918 are associated with a predisposition to T2D, but their relationship with the disease is modulated by the consumption of fresh vegetables and fruits and depends on body mass index.

About the authors

Iuliia E. Azarova

Kursk State Medical University

Author for correspondence.
Email: azzzzar@yandex.ru
ORCID iD: 0000-0001-8098-8052

канд. мед. наук, доц. каф. биологической химии, зав. лаб. биохимической генетики и метаболомики НИИ генетической и молекулярной эпидемиологии

Russian Federation, Kursk

Elena Yu. Klyosova

Kursk State Medical University

Email: azzzzar@yandex.ru
ORCID iD: 0000-0002-1543-9230

мл. науч. сотр. лаб. биохимической генетики и метаболомики НИИ генетической и молекулярной эпидемиологии

Russian Federation, Kursk

Alexey V. Polonikov

Kursk State Medical University

Email: azzzzar@yandex.ru
ORCID iD: 0000-0001-6280-247X

д-р мед. наук, проф. каф. биологии, медицинской генетики и экологии, дир. НИИ генетической и молекулярной эпидемиологи

Russian Federation, Kursk

References

  1. Cho NH, Shaw JE, Karuranga S, et al. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract. 2018;138:271-81. doi: 10.1016/j.diabres.2018.02.023
  2. Krentz NA, Gloyn AL. Insights into pancreatic islet cell dysfunction from type 2 diabetes mellitus genetics. Nat Rev Endocrinol. 2020;16(4):202-12. doi: 10.1038/s41574-020-0325-0
  3. Newsholme P, Cruzat VF, Keane KN, et al. Molecular mechanisms of ROS production and oxidative stress in diabetes. Biochem J. 2016;473(24):4527-50. doi: 10.1042/BCJ20160503C
  4. Malik VS, Popkin BM, Bray GA, et al. Sugar-sweetened beverages, obesity, type 2 diabetes mellitus, and cardiovascular disease risk. Circulation. 2010;121(11):1356-64. doi: 10.1161/CIRCULATIONAHA.109.876185
  5. Cederberg H, Stančáková A, Kuusisto J, et al. Family history of type 2 diabetes increases the risk of both obesity and its complications: is type 2 diabetes a disease of inappropriate lipid storage. J Intern Med. 2015;277(5):540-51. doi: 10.1111/joim.12289
  6. Азарова Ю.Э., Клесова Е.Ю., Сакали С.Ю., Ковалев А.П. Вклад полиморфизма rs11927381 гена IGF2BP2 в патогенез сахарного диабета 2 типа. Научные результаты биомедицинских исследований. 2020;6(1):9-19 [Azarova IE, Klyosova EYu, Sakali SYu, Kovalev AP. Contribution of rs11927381 polymorphism of the IGF2BP2 gene to the pathogenesis of type 2 diabetes. Nauchnye rezul'taty biomeditsinskikh issledovanii. 2020;6(1):9-19 (in Russian)]. doi: 10.18413/2658-6533-2020-6-1-0-2
  7. Азарова Ю.Э., Клесова Е.Ю., Самгина Т.А., и др. Роль полиморфных вариантов гена CYBA в патогенезе сахарного диабета 2 типа. Медицинская генетика. 2019;18(8):37-48 [Azarova YuE, Klyosova EYu, Samgina TA, et al. Role of cyba gene polymorphisms in pathogenesis of type 2 diabetes mellitus. Meditsinskaia genetika. 2019;18(8):37-48 (in Russian)]. doi: 10.25557/2073-7998.2019.08.37-48
  8. World Health Organization. Global report on diabetes: executive summary (№WHO/NMH/NVI/16.3). World Health Organization, 2016. Available at: https://apps.who.int/iris/handle/10665/204874. Accessed: 17.05.2020.
  9. SNPStats [updated 2018; cited 2019 June 13]. Available at: https://www.snpstats.net. Accessed: 17.05.2020.
  10. GTex Portal [updated 2019; cited 2019 June 13]. Available at: https://www.gtexportal.org. Accessed: 17.05.2020.
  11. STRING [updated 2019; cited 2019 June 13]. Available at: https://string-db.org. Accessed: 17.05.2020.
  12. Gene Ontology [updated 2019 June 9; cited 2019 June 13]. Available at: http://geneontology.org. Accessed: 17.05.2020.
  13. García-Giménez JL, Pallardó FV. Maintenance of glutathione levels and its importance in epigenetic regulation. Front Pharmacol. 2014(5):88. doi: 10.3389/fphar.2014.00088
  14. Polonikov AV, Ivanov VP, Bogomazov AD, et al. Antioxidant defense enzyme genes and asthma susceptibility: gender-specific effects and heterogeneity in gene-gene interactions between pathogenetic variants of the disease. Biomed Res Int. 2014;2014:708903. doi: 10.1155/2014/708903
  15. Lubrano V, Balzan S. Enzymatic antioxidant system in vascular inflammation and coronary artery disease. World J Exp Med. 2015;5(4):218-24. doi: 10.5493/wjem.v5.i4.218
  16. Lindbergh E. Hemolytic anemia in disorders of red cell metabolism. Springer Science and Business Media, 2012.
  17. Lagman M, Ly J, Saing T, et al. Investigating the causes for decreased levels of glutathione in individuals with type II diabetes. PLoS One. 2015;10(3):e0118436. doi: 10.1371/journal.pone.0118436
  18. Carter P, Gray LJ, Troughton J, et al. Fruit and vegetable intake and incidence of type 2 diabetes mellitus: systematic review and meta-analysis. BMJ. 2010;341:c4229. doi: 10.1136/bmj.c4229
  19. Boeing H, Bechthold A, Bub A, et al. Critical review: vegetables and fruit in the prevention of chronic diseases. Eur J Nutr. 2012;51(6):637-63. doi: 10.1007/s00394-012-0380-y
  20. Cooper AJ, Sharp SJ, Lentjes MA, et al. A prospective study of the association between quantity and variety of fruit and vegetable intake and incident type 2 diabetes. Diabetes Care. 2012;35(6):1293-300. doi: 10.2337/dc11-2388
  21. Muraki I, Imamura F, Manson JE, et al. Fruit consumption and risk of type 2 diabetes: results from three prospective longitudinal cohort studies. BMJ. 2013;347:f5001. doi: 10.1136/bmj.f5001
  22. Li M, Fan Y, Zhang X, et al. Fruit and vegetable intake and risk of type 2 diabetes mellitus: meta-analysis of prospective cohort studies. BMJ Open. 2014;4(11):e005497. doi: 10.1136/bmjopen-2014-005497
  23. González-Esquivel AE, Charles-Niño CL, Pacheco-Moisés FP, et al. Beneficial effects of quercetin on oxidative stress in liver and kidney induced by titanium dioxide (TiO2) nanoparticles in rats. Toxicol mech methods. 2015;25(3):166-75. doi: 10.3109/15376516.2015.1006491
  24. Granado-Serrano AB, Martín MA, Bravo L, et al. Quercetin modulates Nrf2 and glutathione-related defenses in HepG2 cells: Involvement of p38. Chem Biol Interact. 2012;195(2):154-64. doi: 10.1016/j.cbi.2011.12.005
  25. Xu L, Li Y, Dai Y, Peng J. Natural products for the treatment of type 2 diabetes mellitus: Pharmacology and mechanisms. Pharmacol Res. 2018;130:451-65. doi: 10.1016/j.phrs.2018.01.015
  26. Cardozo LF, Pedruzzi LM, Stenvinkel P, et al. Nutritional strategies to modulate inflammation and oxidative stress pathways via activation of the master antioxidant switch Nrf2. Biochimie. 2013;95(8):1525-33. doi: 10.1016/j.biochi.2013.04.012
  27. Axelsson AS, Mahdi T, Nenonen HA, et al. Sox5 regulates beta-cell phenotype and is reduced in type 2 diabetes. Nat Commun. 2017;8:15652. doi: 10.1038/ncomms15652
  28. Turner N, Kowalski GM, Leslie SJ, et al. Distinct patterns of tissue-specific lipid accumulation during the induction of insulin resistance in mice by high-fat feeding. Diabetologia. 2013;56(7):1638-48. doi: 10.1007/s00125-013-2913-1
  29. Corkey BE. Diabetes: Have we got it all wrong? Insulin hypersecretion and food additives: cause of obesity and diabetes? Diabetes Care. 2016;35(12):2432-7. doi: 10.2337/dc12-0825
  30. Czech MP. Insulin action and resistance in obesity and type 2 diabetes. Nat Med. 2017;23(7):804-14. doi: 10.1038/nm.4350

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Protein network formed by GSR.

Download (146KB)

Copyright (c) 2021 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies