New clinical opportunities for mineralocorticoid receptor antagonists: focus on antifibrotic effects

Cover Page

Cite item

Full Text

Abstract

Mineralocorticoid receptor antagonists have been successfully used for many years to treat patients with primary hyperaldosteronism, refractory arterial hypertension and chronic heart failure. The increased interest in this drug in recent years is due to new information about its antifibrotic and antiproliferative effects, both cardiac and extracardiac. The article also discusses the possibility of using spironolactone in patients with the new coronavirus infection SARS-CoV-2 (COVID-19).

About the authors

Natalia A. Dragomiretskaya

Sechenov First Moscow State Medical University (Sechenov University)

Author for correspondence.
Email: dragomiretskaya_natalia@mail.ru
ORCID iD: 0000-0002-6531-6255

канд. мед. наук, доц. каф. факультетской терапии №2 лечебного фак-та

Russian Federation, Moscow

Aida I. Tarzimanova

Sechenov First Moscow State Medical University (Sechenov University)

Email: dragomiretskaya_natalia@mail.ru
ORCID iD: 0000-0001-9536-8307

д-р мед. наук, проф. каф. факультетской терапии №2 лечебного фак-та

Russian Federation, Moscow

Julia S. Kucherova

Sechenov First Moscow State Medical University (Sechenov University)

Email: dragomiretskaya_natalia@mail.ru
ORCID iD: 0000-0003-4701-9473

студентка

Russian Federation, Moscow

Valery I. Podzolkov

Sechenov First Moscow State Medical University (Sechenov University)

Email: dragomiretskaya_natalia@mail.ru
ORCID iD: 0000-0002-0758-5609

д-р мед. наук, проф., зав. каф. факультетской терапии №2 лечебного фак-та, дир. факультетской терапевтической клиники

Russian Federation, Moscow

References

  1. Kagawa CM, Sturtevant FM, Van Arman CG. Pharmacology of a new steroid that blocks salt activity of aldosterone and desoxycorticosterone. J Pharmacol Exp Ther. 1959;126(2):123-30.
  2. Funder JW. Mineralocorticoid receptor antagonists: emerging roles in cardiovascular medicine. Integr Blood Press Control. 2013;6:129-38. doi: 10.2147/IBPC.S13783
  3. Подзолков В.И., Булатов В.А. Ренин-ангиотензин-альдостероновая система как краеугольный камень сердечно-сосудистого и почечного континуума. Органопротективные свойства антагонистов рецепторов к ангиотензину II. Атмосфера. Новости кардиологии. 2005;3:20-5 [Podzolkov VI, Bulatov VA. The renin-angiotensin-aldosterone system as a cornerstone of the cardiovascular and renal continuum. Organoprotective properties of angiotensin II receptor antagonists. Atmosphere. Cardiology News. 2005;3:20-5 (in Russian)].
  4. Ferrario CM. Cardiac remodelling and RAS inhibition. Ther Adv Cardiovasc Dis. 2016;10(3):162-71.
  5. Kim SK, McCurley AT, DuPont JJ, et al. Smooth Muscle Cell-Mineralocorticoid Receptor as a Mediator of Cardiovascular Stiffness With Aging. Hypertension. 2018;71(4):609-21. doi: 10.1161/HYPERTENSIONAHA.117.10437
  6. Food and drug administration center for drug evaluation and research cardiovascular and renal drugs: advisory committee (CRDAC) meeting. Virtual Meeting Wednesday, December 16, 2020 9:00 a.m. to 1:37 p.m. Available at: https://www.fda.gov/media/146717/download. Accessed: 21.08.2021.
  7. Подзолков В.И., Драгомирецкая Н.А. Антагонисты альдостерона. Современные представления о механизмах действия и эффектах спиронолактона. Рациональная фармакотерапия в кардиологии. 2017;13(2):263-9 [Podzolkov VI, Dragomiretskaya NA. Aldosterone antagonists. Modern views on the mechanism of action and effects of spironolactone. Rational Pharmacotherapy in Cardiology. 2017;13(2):263-9 (in Russian)]. doi: 10.20996/1819-6446-2017-13-2-263-269
  8. Liu B, Zhang TN, Knight JK, Goodwin JE. The Glucocorticoid Receptor in Cardiovascular Health and Disease. Cells. 2019;8(10):1227. doi: 10.3390/cells8101227
  9. Kotfis K, Lechowicz K, Drożdżal S, et al. COVID-19-The Potential Beneficial Therapeutic Effects of Spironolactone during SARS-CoV-2 Infection. Pharmaceuticals (Basel). 2021;14(1):71. doi: 10.3390/ph14010071
  10. Hermidorff MM, de Assis LV, Isoldi MC. Genomic and rapid effects of aldosterone: what we know and do not know thus far. Heart Fail Rev. 2017;22(1):65-89. doi: 10.1007/s10741-016-9591-2
  11. Chen X, Ge W, Dong T, et al. Spironolactone inhibits endothelial-mesenchymal transition via the adenosine A2A receptor to reduce cardiorenal fibrosis in rats. Life Sci. 2019;224:177-86. doi: 10.1016/j.lfs.2019.01.017
  12. Funder JW. Spironolactone in cardiovascular disease: an expanding universe? F1000Res. 2017;6:1738. doi: 10.12688/f1000research.11887.1
  13. Kenchaiah S, Pfeffer MA. Cardiac remodeling in systemic hypertension. Med Clin North Am. 2004;88(1):115-30. doi: 10.1016/s0025-7125(03)00168-8
  14. Gouli A, Kaltsas G, Tzonou A, et al. High prevalence of autonomous aldosterone secretion among patients with essential hypertension. Eur J Clin Invest. 2011;41(11):1227-36. doi: 10.1111/j.1365-2362.2011.02531.x
  15. Markou A, Pappa T, Kaltsas G, et al. Evidence of primary aldosteronism in a predominantly female cohort of normotensive individuals: a very high odds ratio for progression into arterial hypertension. J Clin Endocrinol Metab. 2013;98(4):1409-16. doi: 10.1210/jc.2012-3353
  16. Milliez P, Girerd X, Plouin PF, et al. Evidence for an increased rate of cardiovascular events in patients with primary aldosteronism. J Am Coll Cardiol. 2005;45(8):1243-8. doi: 10.1016/j.jacc.2005.01.015
  17. Savard S, Amar L, Plouin PF, et al. Cardiovascular complications associated with primary aldosteronism: a controlled cross-sectional study. Hypertension. 2013;62(2):331-6. doi: 10.1161/HYPERTENSIONAHA.113.01060
  18. Monticone S, D'Ascenzo F, Moretti C, et al. Cardiovascular events and target organ damage in primary aldosteronism compared with essential hypertension: a systematic review and meta-analysis. Lancet Diabetes Endocrinol. 2018;6(1):41-50. doi: 10.1016/S2213-8587(17)30319-4
  19. Yan Y, Wang C, Lu Y, et al. Mineralocorticoid receptor antagonism protects the aorta from vascular smooth muscle cell proliferation and collagen deposition in a rat model of adrenal aldosterone-producing adenoma. J Physiol Biochem. 2018;74(1):17-24. doi: 10.1007/s13105-017-0600-2
  20. Ori Y, Chagnac A, Korzets A, et al. Regression of left ventricular hypertrophy in patients with primary aldosteronism/low-renin hypertension on low-dose spironolactone. Nephrol Dial Transplant. 2013;28(7):1787-93. doi: 10.1093/ndt/gfs587
  21. Funder JW, Carey RM, Mantero F, et al. The Management of Primary Aldosteronism: Case Detection, Diagnosis, and Treatment: An Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab. 2016;101(5):1889-916. doi: 10.1210/jc.2015-4061
  22. ESC/ESH Guidelines for the management of arterial hypertension. The Task Force for the management of arterial hypertension of the European Society of Cardiology (ESC) and the European Society of Hypertension (ESH). Eur Heart J. 2018;39:3021-104. doi: 10.1093/eurheartj/ehy339
  23. Williams B, MacDonald TM, Morant SV, et al. British Hypertension Society programme of Prevention And Treatment of Hypertension With Algorithm based Therapy (PATHWAY) Study Group. Endocrine and haemodynamic changes in resistant hypertension, and blood pressure responses to spironolactone or amiloride: the PATHWAY-2 mechanisms substudies. Lancet Diabetes Endocrinol. 2018;6(6):464-75. doi: 10.1016/S2213-8587(18)30071-8
  24. Sinnott SJ, Tomlinson LA, Root AA, et al. Comparative effectiveness of fourth-line anti-hypertensive agents in resistant hypertension: A systematic review and meta-analysis. Eur J Prev Cardiol. 2017;24(3):228-38. doi: 10.1177/2047487316675194
  25. Zhao D, Liu H, Dong P, et al. A meta-analysis of add-on use of spironolactone in patients with resistant hypertension. Int J Cardiol. 2017;233:113-7. doi: 10.1016/j.ijcard.2016.12.158
  26. Zannad F, Alla F, Dousset B, et al. Limitation of excessive extracellular matrix turnover may contribute to survival benefit of spironolactone therapy in patients with congestive heart failure: insights from the randomized aldactone evaluation study (RALES) Rales Investigators. Circulation. 2000;102:2700-6. doi: 10.1161/01.cir.102.22.2700
  27. Мареев В.Ю., Фомин И.В., Агеев Ф.Т., и др. Клинические рекомендации ОССН – РКО – РНМОТ. Сердечная недостаточность: хроническая (ХСН) и острая декомпенсированная (ОДСН). Диагностика, профилактика и лечение. Кардиология. 2018;58(6S):8-158 [Mareev VYu, Fomin IV, Ageev FT, et al. Russian Heart Failure Society, Russian Society of Cardiology. Russian Scientific Medical Society of Internal Medicine Guidelines for Heart failure: chronic (CHF) and acute decompensated (ADHF). Diagnosis, prevention and treatment. Kardiologiia. 2018;58(6S):8-158 (in Russian)]. doi: 10.18087/cardio.2475
  28. Solomon SD, Claggett B, Lewis EF, et al. TOPCAT Investigators. Influence of ejection fraction on outcomes and efficacy of spironolactone in patients with heart failure with preserved ejection fraction. Eur Heart J. 2016;37:455-62. doi: 10.1093/eurheartj/ehv464
  29. Li S, Zhang X, Dong M, et al. Effects of spironolactone in heart failure with preserved ejection fraction: A meta-analysis of randomized controlled trials. Medicine (Baltimore). 2018;97(35):e11942. doi: 10.1097/MD.0000000000011942
  30. Cohen JB, Schrauben SJ, Zhao L, et al. Clinical Phenogroups in Heart Failure With Preserved Ejection Fraction: Detailed Phenotypes, Prognosis, and Response to Spironolactone. JACC Heart Fail. 2020;8(3):172-84. doi: 10.1016/j.jchf.2019.09.009
  31. Ravassa S, Trippel T, Bach D, et al. Biomarker-based phenotyping of myocardial fibrosis identifies patients with heart failure with preserved ejection fraction resistant to the beneficial effects of spironolactone: results from the Aldo-DHF trial. Eur J Heart Fail. 2018;20(9):1290-9. doi: 10.1002/ejhf.1194
  32. Cleland JGF, Ferreira JP, Mariottoni B, et al.; HOMAGE Trial Committees and Investigators. The effect of spironolactone on cardiovascular function and markers of fibrosis in people at increased risk of developing heart failure: the heart 'OMics' in AGEing (HOMAGE) randomized clinical trial. Eur Heart J. 2021;42(6):684-96. doi: 10.1093/eurheartj/ehaa758
  33. Haenel J. The effect of aldactone on advanced respiratory insufficiency (respiratory acidosis) in chronic cor pulmonale. Munch Med Wochenschr. 1963;105:2179-85 (in German).
  34. Lieber GB, Fernandez X, Mingo GG, et al. Mineralocorticoid receptor antagonists attenuate pulmonary inflammation and bleomycin-evoked fibrosis in rodent models. Eur J Pharmacol. 2013;718(1-3):290-8. doi: 10.1016/j.ejphar.2013.08.019
  35. Zhou H, Xi D, Liu J, et al. Spirolactone provides protection from renal fibrosis by inhibiting the endothelial-mesenchymal transition in isoprenaline-induced heart failure in rats. Drug Des Devel Ther. 2016;10:1581-8. doi: 10.2147/DDDT.S100095
  36. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet. 2020;395:1054-62. doi: 10.1016/S0140-6736(20)30566-3
  37. Palaiodimos L, Kokkinidis DG, Li W, et al. Severe obesity is associated with higher in-hospital mortality in a cohort of patients with COVID-19 in the Bronx, New York. Metabolism. 2020;108:154262. doi: 10.1016/j.metabol.2020.154262
  38. Lukassen S, Chua RL, Trefzer T, et al. SARS-CoV-2 receptor ACE2 and TMPRSS2 are primarily expressed in bronchial transient secretory cells. EMBO J. 2020;39(10):e105114. doi: 10.15252/embj.20105114
  39. Groß S, Jahn C, Cushman S, et al. SARS-CoV-2 receptor ACE2-dependent implications on the cardiovascular system: From basic science to clinical implications. J Mol Cell Cardiol. 2020;144:47-53. doi: 10.1016/j.yjmcc.2020.04.031
  40. Clinckemalie L, Spans L, Dubois V, et al. Androgen regulation of the TMPRSS2 gene and the effect of a SNP in an androgen response element. Mol Endocrinol. 2013;27:2028-40. doi: 10.1210/me.2013-109
  41. Мареев В.Ю., Орлова Я.А., Плисюк А.Г., и др. Результаты открытого проспективного контролируемого сравнительного исследования по лечению новой коронавирусной инфекции (COVID-19): Бромгексин И Спиронолактон для лечения КоронаВирусной Инфекции, Требующей госпитализации (БИСКВИТ). Кардиология. 2020;60(11):4-15 [Mareev VYu, Orlova YaA, Plisyk AG, et al. Results of Open-Label non-Randomized Comparative Clinical Trial: “BromhexIne and Spironolactone for CoronаvirUs Infection requiring hospiTalization (BISCUIT). Kardiologiia. 2020;60(11):4-15 (in Russian)]. doi: 10.18087/cardio.2020.11.n1440
  42. Cadegiani FA, Wambier CG, Goren A. Spironolactone: An Anti-androgenic and Anti-hypertensive Drug That May Provide Protection Against the Novel Coronavirus (SARS-CoV-2) Induced Acute Respiratory Distress Syndrome (ARDS) in COVID-19. Front Med (Lausanne). 2020;7:453. doi: 10.3389/fmed.2020.00453
  43. Mackenzie IS, Morant SV, Wei L, et al. Spironolactone use and risk of incident cancers: a retrospective, matched cohort study. Br J Clin Pharmacol. 2017;83(3):653-63. doi: 10.1111/bcp.13152

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Comparative effectiveness of fourth-line anti-hypertensive agents in resistant hypertension after 12 weeks treatment [23].

Download (174KB)
3. Fig 2. Decrease in mortality of patients with CHF III–IV NYHA during treatment with spironolactone (RALES research results) [26].

Download (88KB)
4. Fig. 3. Changes of serum markers of extracellular matrix turnover (serum procollagen type I and type III amino-terminal peptide and procollagen type I carboxy-terminal peptide) from baseline after 6 months spironolactone treatment [26].

Download (80KB)

Copyright (c) 2021 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies