COVID-19 and features of cardiovascular involvement

Cover Page

Cite item

Full Text

Abstract

The article provides an overview of current information on the pathogenesis of COVID-19 and organ-specific lesions developing in this disease. The data on inflammation and its biochemical markers, on the features of coagulopathy, endothelial damage and microthrombosis are presented in detail. Particular attention is paid to the role of receptors for angiotensin converting enzyme type 2 and transmembrane serine protease type 2 in the development of organ-specific lesions in COVID-19. The pathogenesis of damage to the cardiovascular system is considered in detail with the presentation of data from foreign literature on changes in the myocardium and the author's results of transthoracic echocardiographic examination in patients who have undergone COVID-19.

About the authors

Elena V. Tsyganova

Moscow City Center for the Prevention and Control of AIDS

Email: ndlena@mail.ru
ORCID iD: 0000-0002-3410-2510

канд. мед. наук, врач-инфекционист, зав. научно-клиническим отд. МГЦ СПИД

Russian Federation, Moscow

Nataliia V. Glukhoedova

Moscow City Center for the Prevention and Control of AIDS

Email: ndlena@mail.ru
ORCID iD: 0000-0003-2414-6103

канд. мед. наук, врач-инфекционист научно-клинического отд. МГЦ СПИД

Russian Federation, Moscow

Aleksandra S. Zhilenkova

Moscow City Center for the Prevention and Control of AIDS

Email: ndlena@mail.ru
ORCID iD: 0000-0001-8139-4061

врач-инфекционист научно-клинического отд. МГЦ СПИД

Russian Federation, Moscow

Tatiana I. Fedoseeva

Family Polyclinic №1

Email: ndlena@mail.ru
ORCID iD: 0000-0003-2888-3995

врач ультразвуковой диагностики ООО СП №1

Russian Federation, Sergiev Posad

Elena N. Iushchuk

Yevdokimov Moscow State University of Medicine and Dentistry

Author for correspondence.
Email: ndlena@mail.ru
ORCID iD: 0000-0003-0065-5624

д-р мед. наук, проф., зав. каф. клинической функциональной диагностики лечебного фак-та ФГБОУ ВО «МГМСУ им. А.И. Евдокимова»

Russian Federation, Moscow

Natalia S. Smetneva

Yevdokimov Moscow State University of Medicine and Dentistry; Medical University “Reaviz“

Email: ndlena@mail.ru
ORCID iD: 0000-0002-2131-387X

канд. мед. наук, ассистент каф. факультетской терапии и профболезней ФГБОУ ВО «МГМСУ им. А.И. Евдокимова»; доц. каф. клинической медицины ЧУОО ВО «Медицинский университет “Реавиз”»

Russian Federation, Moscow; Moscow

References

  1. Guan W, Ni ZY, Yu Hu, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med. 2020;382(18):1708-20. doi: 10.1056/NEJMoa2002032
  2. Fang L, Karakiulakis G, Roth M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet Respir Med. 2020;8(4):e21. doi: 10.1016/s2213-2600(20)30116-8
  3. Misra D, Agarwal V, Gasparyan AOZ. Rheumatologists’ perspective on coronavirus disease 19 (COVID-19) and potential therapeutic targets. Clin Rheumatol. 2020;39(7):2055-62. doi: 10.1007/s10067-020-05073-9
  4. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506. doi: 10.1016/S0140-6736(20)30183-5
  5. Mehta P, McAuley DF, Brown M, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033-4. doi: 10.1016/S0140-6736(20)30628-0
  6. Xu X, Han M, Li T, et al. Effective treatment of severe COVID-19 patients with tocilizumab. Proc Natl Acad Sci. 2020;117(20):10970-5. doi: 10.1073/pnas.2005615117
  7. McGonagle D, O`Donnell JS, Sharif K, et al. Immune mechanisms of pulmonary intravascular coagulopathy in COVID-19 pneumonia. Lancet Rheumatol. 2020;2(7):e437-45. doi: 10.1016/S2665-9913(20)30121-1
  8. Tang N, Li D, Wang X, et al. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020;18(4):844-7. doi: 10.1111/jth.14768
  9. McGonagle D, Sharif K, O'Regan A, et al. The Role of Cytokines including Interleukin-6 in COVID-19 induced Pneumonia and Macrophage Activation Syndrome-Like Disease. Autoimmun Rev. 2020;19):1-7. doi: 10.1016/j.autrev.2020.102537
  10. Behzad S, Aghaghazvini L, Radmard AR, Gholamrezanezhad A. Extrapulmonary manifestations of COVID-19: Radiologic and clinical overview. Clin Imaging. 2020;66:35-41. doi: 10.1016/j.clinimag.2020.05.013
  11. Dong M, Zhang J, Ma X, et al. ACE2, TMPRSS2 distribution and extrapulmonary organ injury in patients with COVID-19. Biomed Pharmacother. 2020;131. doi: 10.1016/j.biopha.2020.110678
  12. Zou X, Chen K, Zou J, et al. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front Med. 2020;14(2):185-92. doi: 10.1007/s11684-020-0754-0
  13. Pan XW, Xu D, Zhang H, et al. Identification of a potential mechanism of acute kidney injury during the COVID-19 outbreak: a study based on single-cell transcriptome analysis. Int Care Med. 2020;46(6):1114-6. doi: 10.1007/s00134-020-06026-1
  14. Zhang H, Kang Z, Gong H, et al. The digestive system is a potential route of 2019-nCov infection: A bioinformatics analysis based on single-cell transcriptomes. BioRxiv. 2020:2020.01.30.927806. doi: 10.1101/2020.01.30.927806
  15. Guo AX, Cui JJ, OuYang QY, et al. The clinical characteristics and mortal causes analysis of COVID-19 death patients. MedRxiv. 2020. doi: 10.1101/2020.04.12.20062380
  16. Chen L, Li X, Chen M, et al. The ACE2 expression in human heart indicates new potential mechanism of heart injury among patients infected with SARS-CoV-2. Cardiovasc Res. 2020;116(6):1097-100. doi: 10.1093/cvr/cvaa078
  17. Seow J, Pai R, Mishra A. ScRNA-seq reveals ACE2 and TMPRSS2 expression in TROP2+ Liver Progenitor Cells: Implications in COVID-19 associated Liver Dysfunction. BioRxiv. 2020. doi: 10.1101/2020.03.23.002832
  18. Ackermann M, Verleden SE, Kuehnel M, et al. Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19. N Engl J Med. 2020;383:120-8. doi: 10.1056/NEJMoa2015432
  19. Bonetti PO, Lerman LO, Lerman A. Endothelial dysfunction: A marker of atherosclerotic risk. Arteriosclerosis, Thrombosis, and Vascular Biology. Arterioscler Thromb Vasc Biol. 2003;23(2):168-75. doi: 10.1161/01.ATV.0000051384.43104.FC
  20. Campbell CM, Kahwash R. Will Complement Inhibition Be the New Target in Treating COVID-19-Related Systemic Thrombosis? Circulation. 2020;141(22):1739-41. doi: 10.1161/CIRCULATIONAHA.120.047419
  21. Wang X, Sahu KK, Cerny J. Coagulopathy, endothelial dysfunction, thrombotic microangiopathy and complement activation: potential role of complement system inhibition in COVID-19. J Thromb. 2020:1-6. doi: 10.1007/s11239-020-02297-z
  22. Iba T, Levy JH, Connors JM, et al. The unique characteristics of COVID-19 coagulopathy. Crit Care. 2020;24(1). doi: 10.1186/s13054-020-03077-0
  23. Driggin E, Madhavan MV, Bikdeli B, et al. Cardiovascular Considerations for Patients, Health Care Workers, and Health Systems During the COVID-19 Pandemic. J Am Col Cardiol. 2020;75(18):2352-71. doi: 10.1016/j.jacc.2020.03.031
  24. Clerkin KJ, Fried JA, Raikhelkar J, et al. COVID-19 and Cardiovascular Disease. Circulation. 2020;141:1648-55. doi: 10.1161/CIRCULATIONAHA.120.046941
  25. Hu H, Ma F, Wei X, Fang Y. Coronavirus fulminant myocarditis saved with glucocorticoid and human immunoglobulin. Eur Heart J. 2021;42(2):206. doi: 10.1093/eurheartj/ehaa190
  26. Inciardi RM, Lupi L, Zaccone G, et al. Cardiac Involvement in a Patient with Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. 2020;5(7):819-24. doi: 10.1001/jamacardio.2020.1096
  27. Wei X, Fang Y, Hu H. Glucocorticoid and immunoglobulin to treat viral fulminant myocarditis. Eur Heart J. 2020;41(22):2122. doi: 10.1093/eurheartj/ehaa357
  28. Agricola E, Beneduce A, Esposito A, et al. Heart and Lung Multimodality Imaging in COVID-19. JACC Cardiovasc Imaging. 2020;13(8):1792-808. doi: 10.1016/j.jcmg.2020.05.017
  29. Oudit GY, Kassiri Z, Jiang C, et al. SARS-coronavirus modulation of myocardial ACE2 expression and inflammation in patients with SARS. Eur J Clin Invest. 2009;39(7):618-25. doi: 10.1111/j.1365-2362.2009.02153.x
  30. Sala S, Peretto G, Gramegna M, et al. Acute myocarditis presenting as a reverse Tako-Tsubo syndrome in a patient with SARS-CoV-2 respiratory infection. Eur Heart J. 2020;41(19):1861-2. doi: 10.1093/eurheartj/ehaa286
  31. Doyen D, Moceri P, Ducreux D, Dellamonica J. Myocarditis in a patient with COVID-19: a cause of raised troponin and ECG changes. Lancet. 2020;395(10235):1516. doi: 10.1016/S0140-6736(20)30912-0
  32. Hua A, O'Gallagher K, Sado D, Byrne J. Life-threatening cardiac tamponade complicating myo-pericarditis in COVID-19. Eur Heart J. 2020;41(22):2130. doi: 10.1093/eurheartj/ehaa253
  33. Xu Z, Shi L, Wang Y, et al. Case Report Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020;8(4):420-2. doi: 10.1016/S2213-2600(20)30076-X
  34. Frangogiannis NG. The inflammatory response in myocardial injury, repair and remodeling. Nat Rev Cardiol. 2014;11(5):255-65. doi: 10.1038/nrcardio.2014.28
  35. Agewall S, Beltrame JF, Reynolds HR, et al. ESC working group position paper on myocardial infarction with non-obstructive coronary arteries. Eur Heart J. 2017;38(3):143-53. doi: 10.1093/eurheartj/ehw149
  36. Aghagoli G, Gallo Marin B, Soliman LB, Sellke FW. Cardiac involvement in COVID-19 patients: Risk factors, predictors, and complications: A review. J Card Surg. 2020;35(6):1302-5. doi: 10.1111/jocs.14538
  37. Puntmann VO, Carerj ML, Wieters I, et al. Outcomes of Cardiovascular Magnetic Resonance Imaging in Patients Recently Recovered From Coronavirus Disease 2019 (COVID-19) Editorial Supplemental content. JAMA Cardiol. 2020;5(11):1265-73. doi: 10.1001/jamacardio.2020.3557
  38. Puntmann VO, Valbuena S, Hinojar R, et al. Society for Cardiovascular Magnetic Resonance (SCMR) expert consensus for CMR imaging endpoints in clinical research: Part I – Analytical validation and clinical qualification. J Cardiovas Magn Reson. 2018;20(1). doi: 10.1186/s12968-018-0484-5

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The structure of organ-specific lesions in COVID-19.

Download (390KB)
3. Fig. 2. Distribution of ACE2 and TMPRSS2 receptors in various human organ systems. The color intensity reflects the level of gene expression of these receptors (adapted [11]).

Download (145KB)
4. Fig. 3. Pathophysiology and clinical progression of COVID-19 (adapted from [28]).

Download (142KB)
5. Fig. 4. EchoCG, apical 4-chamber position, examples of inclusions in the thickness of the interventricular septum.

Download (130KB)
6. Fig. 5. EchoCG, parasternal position, left ventricle long axis, examples of linear areas of fibrosis in the interventricular septum.

Download (122KB)
7. Fig. 6. An example of inclusions in the interventricular septum in a 21-year-old patient who didn’t have COVID-19.

Download (103KB)
8. Fig. 7. Comparison of EchoCG results in COVID-19 survivors and time from disease onset.

Download (71KB)

Copyright (c) 2021 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies