Gaucher disease: achievements and prospects

Cover Page

Cite item

Full Text

Abstract

Gaucher disease (GD) is the most common lysosomal storage disorder, resulting from a deficiency in the activity of a lysosomal enzyme – glucocerebrosidase, which is involved in the catabolism of sphingolipids. The phenomenal progress in understanding the pathogenesis and development of specific therapy of this disease over the past 60 years dramatically changed the clinical phenotype of GD, turning a severe progressive disorder into an asymptomatic metabolic defect. The evolution of the understanding of GD associated with fundamental discoveries in the field of cell biology, biochemistry and genetics may be of interest to a wide audience – as a model of the effective work of the scientific community in the treatment of rare metabolic pathology.

About the authors

Rodion V. Ponomarev

National Research Center for Hematology

Author for correspondence.
Email: ponomarev.r.v@icloud.com
ORCID iD: 0000-0002-1218-0796

врач-гематолог отд-ния орфанных заболеваний

Russian Federation, Moscow

Elena A. Lukina

National Research Center for Hematology

Email: ponomarev.r.v@icloud.com
ORCID iD: 0000-0002-8774-850X

д-р мед. наук, проф., зав. отд-нием орфанных заболеваний

Russian Federation, Moscow

References

  1. Gaucher PC. De L’epithelioma primitif de la rate, hypertrophie idiopathique de la rate sans leucemie. Academic Thesis, Paris.1882; Available at: https://archive.org/details/b30577792. Accessed: 03.04.21
  2. Brill NE. Primary splenomegaly with a report of three cases occuring in one family. Am J Med Sci. 1901;121:377. doi: 10.1097/00000441-190104000-00001
  3. Oberling CWP. La maladie de Gaucher chez le nourrisson. Rev franç de pédiat. 1927;3:475.
  4. Hillborg PO. Gaucher’s disease in Norrbotten. Nord Med. 1959;61:303-6.
  5. Marchand FM. Über Sogennante idiopathische Splenomegalie (Typus Gaucher). Munchen med Wchnschr. 1907;54:1102-3.
  6. Leib H. Cerebrosidespeicherung bei Splenomegalie Typos Gaucher. Ztschr Physsiol Chem. 1924;140:305.
  7. Aghion H. La Maladie de Gaucher Dans l'enfance (forme cardio-rénale). Dr. Thesis. Paris, 1934.
  8. De Duve C, Wattiaux R. Functions of lysosomes. Annu Rev Physiol. 1966;28:435-92. doi: 10.1146/annurev.ph.28.030166.002251
  9. Novikoff AB, Beaufay H, De Duve C. Electron microscopy of lysosome-rich fractions from rat liver. J Cell Biol. 1956;2:179-84. doi: 10.1083/jcb.2.4.179
  10. Essner E, Novikoff AB. Localization of acid phosphatase activity in hepatic lysosomes by means of electron microscopy. J Biophys Biochem Cytol. 1961;9(4):773-84. doi: 10.1083/jcb.9.4.773
  11. De Duve C. Exploring cells with a centrifuge. Science. 1975;189(4198):186-94. doi: 10.1126/science.1138375
  12. Ballabio A. The awesome lysosome. EMBO Mol Med. 2016;8(2):73-6. doi: 10.15252/emmm.201505966
  13. Settembre C, Fraldi A, Medina DL, et al. Signals from the lysosome. Nat Rev Mol Cell Biol. 2013;14:283-96. doi: 10.1038/nrm3565.Signals
  14. Xu H, Ren D. Lysosomal physiology. Annu Rev Physiol. 2015;77:57-80. doi: 10.1146/annurev-physiol-021014-071649
  15. Andrews NW, Almeida PE, Corrotte M. Damage control: Cellular mechanisms of plasma membrane repair. Trends Cell Biol. 2014;24(12):734-42. doi: 10.1016/j.tcb.2014.07.008
  16. Mostov K, Werb Z. Journey across the osteoclast. Science. 1997;276(5310):219-20. doi: 10.1126/science.276.5310.219
  17. Aderem A, Underhill DM. Mechanisms of phagocytosos in macrophages. Annu Rev Immunol. 1999;17:593-623. doi: 10.1146/annurev.immunol.17.1.593
  18. Do J, McKinney C, Sharma P, et al. Glucocerebrosidase and its relevance to Parkinson disease. Mol Neurodegener. 2019;14:1-16. doi: 10.1186/s13024-019-0336-2
  19. Petkau TL, Leavitt BR. Progranulin in neurodegenerative disease. Trends Neurosci. 2014;37(7):388-98. doi: 10.1016/j.tins.2014.04.003
  20. Stirnemann JÔ, Belmatoug N, Camou F, et al. A review of gaucher disease pathophysiology, clinical presentation and treatments. Int J Mol Sci. 2017;18:1-30. doi: 10.3390/ijms18020441
  21. Liu L, Zhang N, Dou Y, et al. Lysosomal dysfunction and autophagy blockade contribute to IMB-6G-induced apoptosis in pancreatic cancer cells. Sci Rep. 2017. doi: 10.1038/srep41862
  22. Rawnsley DR, Diwan A. Lysosome impairment as a trigger for inflammation in obesity: The proof is in the fat. EBioMedicine. 2020;56:102824. doi: 10.1016/j.ebiom.2020.102824
  23. Brady RO, Kanfer J, Shapiro D. The Metabolism of Glucocerebrosides. I. Purification and properties of a glucocerebroside-cleaving enzyme from spleen tissue. J Biol Chem. 1965;240:39-43.
  24. Kampine JP, Brady RO, Kanfer JN, et al. Diagnosis of Gaucher’s disease and Niemann-Pick disease with small samples of venous blood. Science. 1967;155(3758):86-8. doi: 10.1126/science.155.3758.86
  25. Schneider RO, Ellis WG, Brady RO, et al. Infantile (type II) Gaucher’s disease: In utero diagnosis and fetal pathology. J Pediatr. 1972;81(6):1134-9. doi: 10.1016/s0022-3476(72)80245-2
  26. De Duve C. From cytases to lysosomes. Fed Proc. 1964;23:1045-9
  27. Ginns EI, Choudary PV., Tsuji S, et al. Gene mapping and leader polypeptide sequence of human glucocerebrosidase: Implications for Gaucher disease. Proc Natl Acad Sci USA. 1985;82(20):7101-5. doi: 10.1073/pnas.82.20.7101
  28. Tsuji S, Choudary PV., Martin BM, et al. A Mutation in the Human Glucocerebrosidase Gene in Neuronopathic Gaucher’s Disease. N Engl J Med. 1987;316(10):570-5. doi: 10.1056/nejm198703053161002
  29. Tsuji S, Martin BM, Barranger JA, et al. Genetic heterogeneity in type 1 Gaucher disease: Multiple genotypes in Ashkenazic and non-Ashkenazic individuals. Proc Natl Acad Sci USA. 1988;85(7):2349-52. doi: 10.1073/pnas.85.7.2349
  30. Grabowski GA. Phenotype, diagnosis, and treatment of Gaucher’s disease. Lancet. 2008;372:1263-1271. doi: 10.1016/S0140-6736(08)61522-6
  31. Pentchev PG, Brady RO, Hibbert SR, et al. Isolation and characterization of glucocerebrosidase from human placental tissue. J Biol Chem. 1973;248:5256-5261.doi: 10.1016/s0021-9258(19)43595-3
  32. Brady RO, Pentchev PG, Gal AE, et al. Replacement Therapy for Inherited Enzyme Deficiency: Use of Purified Glucocerebrosidase in Gaucher’s Disease. N Engl J Med. 1974;291:989-93. doi: 10.1056/NEJM197411072911901
  33. Furbish FS, Blair HE, Shiloach J, et al. Enzyme replacement therapy in Gaucher’s disease: large-scale purification of glucocerebrosidase suitable for human administration. Proc Natl Acad Sci USA. 1977;74(8):3560-3563. doi: 10.1073/pnas.74.8.3560
  34. Doebber TW, Wu MS, Bugianesi RL, et al. Enhanced macrophage uptake of synthetically glycosylated human placental β-glucocerebrosidase. J Biol Chem. 1982;257(5):2193-9.
  35. Barton NW, Brady RO, Murray GJ, et al. Replacement therapy for inherited enzyme deficiency – macrophage-targeted glucocerebrosidase for gaucher’s disease. N Engl J Med. 1991;324(21):1464-70. doi: 10.1056/NEJM199105233242104
  36. Eds. AH Futerman, A Zimran. Gaucher disease. Taylor & Francis Group, LLC, 2007.
  37. Starzyk K, Richards S, Yee J, et al. The long-term international safety experience of imiglucerase therapy for Gaucher disease. Mol Genet Metab. 2007;90:157-63. doi: 10.1016/j.ymgme.2006.09.003
  38. Mistry PK, Batista JL, Andersson HC, et al. Transformation in pretreatment manifestations of Gaucher disease type 1 during two decades of alglucerase/imiglucerase enzyme replacement therapy in the International Collaborative Gaucher Group (ICGG) Gaucher Registry. Am J Hematol. 2017;92(9):929-39. doi: 10.1002/ajh.24801
  39. Davidson BA, Hassan S, Garcia EJ, et al. Exploring genetic modifiers of Gaucher disease: The next horizon. Hum Mutat. 2018;39:1739-51. doi: 10.1002/humu.23611
  40. Ivanova M, Limgala RP, Changsila E, et al. Gaucheromas: When macrophages promote tumor formation and dissemination. Blood Cells, Mol Dis. 2018;68:100-5. doi: 10.1016/j.bcmd.2016.10.018
  41. Mistry PK, Sirrs S, Chan A, et al. Pulmonary hypertension in type 1 Gaucher’s disease: Genetic and epigenetic determinants of phenotype and response to therapy. Mol Genet Metab. 2002;77(1-2):91-8. doi: 10.1016/S1096-7192(02)00122-1
  42. Boot RG, Verhoek M, de Fost M, et al. Marked elevation of the chemokine CCL18/PARC in Gaucher disease: A novel surrogate marker for assessing therapeutic intervention. Blood. 2004;103(1):33-9. doi: 10.1182/blood-2003-05-1612
  43. Kanneganti M, Kamba A, Mizoguchi E. Role of chitotriosidase (Chitinase 1) under normal and disease conditions. J Epithel Biol Pharmacol. 2012;5:1-9. doi: 10.2174/1875044301205010001
  44. Raskovalova T, Deegan PB, Yang R, et al. Plasma chitotriosidase activity versus CCL18 level for assessing type I Gaucher disease severity: Protocol for a systematic review with meta-analysis of individual participant data. Syst Rev. 2017;6:1-10. doi: 10.1186/s13643-017-0483-x
  45. Elmonem MA, van den Heuvel LP, Levtchenko EN. Immunomodulatory Effects of Chitotriosidase Enzyme. Enzyme Res. 2016;2016:2682680. doi: 10.1155/2016/2682680
  46. Hurvitz N, Dinur T, Cohen MB, et al. Glucosylsphingosine (Lyso-gb1) as a biomarker for monitoring treated and untreated children with gaucher disease. Int J Mol Sci. 2019;20:1-9. doi: 10.3390/ijms20123033
  47. Murugesan V, Chuang WL, Liu J, et al. Glucosylsphingosine is a key biomarker of Gaucher disease. Am J Hematol. 2016;91:1082-9. doi: 10.1002/ajh.24491
  48. Пономарев Р.В., Лукина Е.А., Сысоева Е.П. Поддерживающий режим заместительной ферментной терапии у взрослых больных болезнью Гоше I типа: предварительные результаты. Гематология и трансфузиология. 2019;64(3):331-41 [Ponomarev RV, Lukina KA, Sysoeva EP, et al. Reduced dosing regimen of enzyme replacement therapy in adults patients with type I Gaucher disease: preliminary results. Russ J Hematol Transfusiology. 2019;64(3):331-41 (in Russian)]. doi: 10.35754/0234-5730-2019-64-3-331-341
  49. Fink JK, Correll PH, Perry LK, et al. Correction of glucocerebrosidase deficiency after retroviral-mediated gene transfer into hematopoietic progenitor cells from patients with Gaucher disease. Proc Natl Acad Sci USA. 1990;87(6):2334-8. doi: 10.1073/pnas.87.6.2334
  50. Enquist IB, Nilsson E, Ooka A, et al. Effective cell and gene therapy in a murine model of Gaucher disease. Proc Natl Acad USA. 2006;103(37):13819-24. doi: 10.1073/pnas.0606016103
  51. Du S, Ou H, Cui R, et al. Delivery of Glucosylceramidase Beta Gene Using AAV9 Vector Therapy as a Treatment Strategy in Mouse Models of Gaucher Disease. Hum Gene Ther. 2019;30:155-67. doi: 10.1089/hum.2018.072

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».