Clinical and laboratory signs and risk factors for nephrotoxicity, associated with antiangiogenic drugs

Cover Page

Cite item

Full Text

Abstract

Background. Anti-angiogenic anticancer drugs that block the vascular endothelial growth factor signaling pathway can cause renal damage. Assessment of the risk of nephrotoxicity allows developing optimal treatment approaches and ensuring the relative safety of therapy.

Aim. To assess early clinical and laboratory manifestations and risk factors for nephrotoxicity of antiangiogenic drugs.

Materials and methods. The study included 50 patients who received antiangiogenic drugs in different regimens of chemotherapy. Demographic factors, body mass index, blood pressure levels, type of antiangiogenic drug, and concomitant therapy were assessed. Before treatment and over a period of 8 weeks, the levels of hemoglobin, number of platelets and schistocytes, D-dimer levels, serum lactate dehydrogenase (LDH) levels, as well as daily proteinuria and serum creatinine and eGFRCKD-EPI were assessed. Linear regression analysis was performed to assess risk factors for nephrotoxicity and arterial hypertension (AH).

Results. The median age of patients was 46 [34–57] years, 22 (44%) men and 28 (56%) women. AH developed in 52%, a decrease in eGFR – in 42%, along with a decrease in hemoglobin levels and an increase in LDH levels – at 2 weeks of therapy. The numbers of schistocytes and platelets significantly decreased by 8 weeks of therapy. Risk factors for impaired renal function during treatment with antiangiogenic drugs were an initial decrease in GFR less than 80 ml/min/1.73 m2, an increase in D-dimer levels, and a decrease in hemoglobin levels by 8 weeks of treatment. The risk factors for AH during therapy were the initial decrease in eGFR less than 80 ml/min/1.73 m2 and no prophylactic anticoagulant therapy.

Conclusion. Early signs of nephrotoxicity of antiangiogenic anticancer drugs were a decrease in eGFR and AH. The independent risk factors for nephrotoxicity were the initial decrease in eGFR, an increase in D-dimer levels, and a decrease in hemoglobin levels at 8 weeks of treatment, while the prophylactic use of anticoagulant therapy reduced this risk in our study.

About the authors

Katerina S. Grechukhina

Lomonosov Moscow State University; Loginov Moscow Clinical Scientific and Practical Center

Author for correspondence.
Email: dr.grechukhina@gmail.com
ORCID iD: 0000-0002-0616-5477

аспирант каф. внутренних болезней ФГБОУ ВО «МГУ им. М.В. Ломоносова», врач- онколог ГБУЗ «МКНЦ им. А.С. Логинова»

Russian Federation, Moscow; Moscow

Natalia V. Chebotareva

Sechenov First Moscow State Medical University (Sechenov University)

Email: dr.grechukhina@gmail.com
ORCID iD: 0000-0003-2128-8560

д-р мед. наук, проф. каф. внутренних, профессиональных болезней и ревматологии Института клинической медицины им. Н.В. Склифосовского ФГАОУ ВО «Первый МГМУ им. И.М. Сеченова» (Сеченовский Университет)

Russian Federation, Moscow

Liudmila G. Zhukova

Loginov Moscow Clinical Scientific and Practical Center

Email: dr.grechukhina@gmail.com
ORCID iD: 0000-0003-4848-6938

д-р мед. наук, проф., зам. дир. по онкологии ГБУЗ «МКНЦ им. А.С. Логинова»

Russian Federation, Moscow

Tatiana N. Krasnova

Lomonosov Moscow State University

Email: dr.grechukhina@gmail.com
ORCID iD: 0000-0002-7647-3942

зав. каф. внутренних болезней ФГБОУ ВО «МГУ им. М.В. Ломоносова»

Russian Federation, Moscow

References

  1. Ferrara N, Gerber H, LeCouter J. The biology of VEGF and its receptors. Nat Med. 2003; 9:669-76. doi: 10.1038/nm0603-669
  2. Zirlik K, Duyster J. Anti-Angiogenics: Current Situation and Future Perspectives. Oncol Res Treat. 2018;41:166-17. doi: 10.1159/000488087
  3. Wang Z, Dabrosin C, Yin X, et al. Broad targeting of angiogenesis for cancer prevention and therapy. Semin Cancer Biol. 2015;35:S224-43. doi: 10.1016/j.semcancer.2015.01.001
  4. Balic M, Hilbe W, Gusel S, et al. Prevalence of comorbidity in cancer patients scheduled for systemic anticancer treatment in Austria. Memo. 2019;12:290-6. doi: 10.1007/s12254-019-00542-7
  5. Kelly C, Power D, Lichtman S. Targeted Therapy in Older Patients With Solid Tumors. J Clin Oncol. 2014;32(34):2635-42. doi: 10.1200/JCO.2014.55.4246
  6. Toriu A, Sekine A, Mizuno H, et al. Renal-Limited Thrombotic Microangiopathy due to Bevacizumab Therapy for Metastatic Colorectal Cancer: A Case Report. Case Rep Oncol. 2019;12:391-400. doi: 10.1159/00050071
  7. Трякин А.А. Таргетная терапия колоректального рака, рака желудка и поджелудочной железы. Практ. онкология. 2010;11(3):143-50 [Tryakin AA. Targeted therapy for colorectal cancer, stomach cancer and pancreas. Practical oncology. 2010;11(3):143-50 (in Russian)].
  8. Giantonio B, Catalano P, Meropol N. Bevacizumab in Combination With Oxaliplatin, Fluorouracil, and Leucovorin (FOLFOX4) for Previously Treated Metastatic Colorectal Cancer: Results From the Eastern Cooperative Oncology Group Study E3200. J Clin Oncol. 2007;20:1539-44. doi: 10.1200/JCO.2006.09.6305
  9. Pastorino A, Di Bartolomeo M, Maiello E, et al. Aflibercept Plus FOLFIRI in the Real-life Setting: Safety and Quality of Life Data From the Italian Patient Cohort of the Aflibercept Safety and Quality-of-Life Program Study. Clin Colorectal Cancer. 2018;17(3):e457-70. doi: 10.1016/j.clcc.2018.03.002
  10. Niu G, Chen X. Vascular Endothelial Growth Factor as an Anti-angiogenic Target for Cancer Therapy. Curr Drug Targets. 2010;11(8):1000-17. doi: 10.2174/138945010791591395
  11. Maitland M, Bakris G, Black H, et al. Initial assessment, surveillance, and management of blood pressure in patients receiving vascular endothelial growth factor signaling pathway inhibitors. J Natl Cancer Inst. 2010;102:596-604. doi: 10.1093/jnci/djq091
  12. Vaidya V, Ozer J, Frank D, et al. Kidney Injury Molecule-1 Outperforms Traditional Biomarkers of Kidney Injury in Multi-site Preclinical Biomarker Qualification Studies. Nat Biotechnol. 2010;28(5):478-85. doi: 10.1038/nbt.1623
  13. Arnold D, Fuchs C, Tabernero J, et al. Meta-analysis of individual patient safety data from six randomized, placebo-controlled trials with the antiangiogenic VEGFR2-binding monoclonal antibody ramucirumab. Ann Oncol. 2017;28:2932-42. doi: 10.1093/annonc/mdx514
  14. Qi W, Shen Z, Tang L. Risk of Hypertension in Cancer Patients Treated with Aflibercept: A Systematic Review and Meta-Analysis. Clin Drug Investig. 2014;34:231-40. doi: 10.1007/s40261-014-0174-5
  15. Azad N, Posadas E, Kwitkowski V, et al. Combination targeted therapy with sorafenib and bevacizumab results in enhanced toxicity and antitumor activity. J Clin Oncol. 2008;26:3709-14. doi: 10.1200/JCO.2007.10.8332
  16. Feldman D, Baum M, Ginsberg M, et al. Phase I trial of bevacizumab plus escalated doses ofsunitinib in patients with metastatic renal cell carcinoma. J Clin Oncol. 2009;27:1432-9. doi: 10.1200/JCO.2008.19.0108
  17. Wu S, Chen J, Kudelka A, et al. Incidence and risk of hypertension with sorafenib in patients with cancer: a systematic review and meta-analysis. Lancet Oncol. 2008;9:117-23. doi: 10.1016/j.eururo.2018.05.002
  18. Kanbayashi Y, Ishikawa T, Tabuchi Y, et al. Predictive factors for the development of proteinuria in cancer patients treated with bevacizumab, ramucirumab, and aflibercept: a single-institution retrospective analysis. Sci Rep. 2020;10:2011. doi: 10.1038/s41598-020-58994-5
  19. Slusarz K, Merker V, Muzikansky A, et al. Long-term toxicity of bevacizumab therapy in neurofibromatosis 2 patients. Cancer Chemother Pharmacol. 2014;73(6):1197-204. doi: 10.1007/s00280-014-2456-2
  20. Vaidya V, Ozer J, Frank D, et al. Kidney Injury Molecule-1 Outperforms Traditional Biomarkers of Kidney Injury in Multi-site Preclinical Biomarker Qualification Studies. Nat Biotechnol. 2010;28(5):478-85. doi: 10.1038/nbt.1623
  21. Abrahamson D. Glomerulogenesis in the developing kidney. Semin Nephrol. 1991;4(11):375-89.
  22. Eremina V, Baelde H, Quaggin S. Role of the VEGF – a signaling pathway in the glomerulus: evidence for crosstalk between components of the glomerular filtration barrier. Nephron Physiol. 2007;106(2):32-7. doi: 10.1159/000101798
  23. Hara A, Wada T, Furuchi K, et al. Blockade of VEGF accelerates proteinuria via decrease in nephrin expression in rat crescentic glomerulonephritis. Kidney Int. 2006;69(11):1986-95. doi: 10.1038/sj.ki.5000439
  24. Horowitz J, Rivard A, van der Zee R, et al. Vascular endothelial growth factor/vascular permeability factor produces nitric oxide-dependent hypotension. Evidence for a maintenance role in quiescent adult endothelium. Arterioscler Thromb Vasc Biol. 1997;17:2793-800. doi: 10.1161/01.atv.17.11.2793
  25. Bollee G, Patey N, Cazajous G, et al. Thrombotic microangiopathy secondary to VEGF pathway inhibition by sunitinib. Nephrol Dial Transplant. 2009;24:682-5. doi: 10.1093/ndt/gfn657
  26. Izzedine H, Brocheriou I, Deray G, Rixe O. Thrombotic microangiopathy and anti-VEGF agents. Nephrol Dial Transplant. 2007;22:1481-2. doi: 10.1093/ndt.gfl565
  27. Estrada C, Maldonado A, Mallipattu S. Therapeutic Inhibition of VEGF Signaling and Associated Nephrotoxicities. JASN. 2019;30(2):187-200. doi: 10.1681/ASN.2018080853
  28. Fujii T, Kawaasoe K, Tonooka A, et al. Nephrotic syndrome associated with ramucirumab therapy. A single-center case series and literature review. Medicine (Baltimore). 2019;98(27):e16236. doi: 10.1097/MD.0000000000016236
  29. Hanna R, Barsoum M, Arman F, et al. Nephrotoxicity induced by intravitreal vascular endothelial growth factor inhibitors: emerging evidence. Kidney Int. 2019;96(3):572-80. doi: 10.1016/j.kint.2019.02.042
  30. Diabetic Retinopathy Clinical Research Network, Scott IU, Edwards AR, et al. A phase II randomized clinical trial of intravitreal bevacizumab for diabetic macular edema. Ophthalmology. 2007;114(10):1860-7. doi: 10.1016/j.ophtha.2007.05.062
  31. Georgalas I, Papaconstantinou D, Papadopoulos K, et al. Renal Injury Following Intravitreal Anti-VEGF Administration in Diabetic Patients with Proliferative Diabetic Retinopathy and Chronic Kidney Disease – A Possible Side Effect? Curr Drug Saf. 2014;9:156. doi: 10.2174/1574886309666140211113635
  32. Khneizer P, Gebran T, Al-Taee M, et al. Self-limited membranous nephropathy after intravitreal bevacizumab therapy for age-related macular degeneration. J Nephropathol. 2017;6(3):134-7. doi: 10.15171/jnp.2017.23
  33. Morale E, Moliz C, Gutierrez E. Renal damage associated to intravitreal administration of ranibizumab. Nefrología (English Edition). 2017;37(6):653-5. doi: 10.1016/j.nefroe.2017.10.007
  34. Wang J, Zhu C. Anticoagulation in combination with antiangiogenesis and chemotherapy for cancer patients: evidence and hypothesis. Onco Targets Ther. 2016;9:4737-46. doi: 10.2147/OTT.S103184
  35. Frere C, Debourdeau P, Hij A, et al. Therapy for cancer-related thromboembolism. Semin Oncol. 2014;41(3):319-38. doi: 10.1053/j.seminoncol.2014.04.005
  36. Kilickap S, Abali H, Celik I. Bevacizumab, bleeding, thrombosis, and warfarin. J Clin Oncol. 2003;21(18):3542. doi: 10.1200/JCO.2003.99.046

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Blood pressure, glomerular filtration rates, proteinuria patterns during antiangiogenic treatment.

Download (201KB)
3. Fig. 2. Hemoglobin, lactate dehydrogenase, platelets and schystocytes patterns during antiangiogenic treatment.

Download (225KB)

Copyright (c) 2021 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies