Efficiency of application of sorbed probiotics in complex therapy of pneumonia caused by SARS-CoV-2. Part 1. Heating clinical displays period

Cover Page

Cite item

Full Text

Abstract

Aim. To determine the clinical efficacy and safety of the sorbed probiotics Bifidobacterium bifidum 1 (5×108 KОЕ) and B. bifidum 1 (5×107 KОЕ) in combination with Lactobacillus plantarum 8P-А3 in the complex therapy of pneumonia caused by SARS-CoV-2 in adult patients without severe risk factors.

Materials and methods. An open, randomized prospective study included 100 patients (45 men, 55 women), aged 18 to 60 years without risk factors for severe COVID-19 with pneumonia confirmed by computed tomography, and an area of lung lesion no more than 75% (moderate forms). SARS-CoV-2 RNA in nasal and oropharyngeal swabs (RT-PCR) was detected in 72% of the participants, in the rest it was highly probable in terms of the aggregate parameters. Diagnostics of COVID-19 and its severity, the appointment of a standard examination and treatment were carried out in accordance with the Temporary Methodological Recommendations of the Ministry of Health of Russia, version 8 of 09.03.2020. This publication presents the results of using B. bifidum 1 (3 capsules twice a day for 10 days) during the peak of clinical manifestations (in a hospital).

Results. In those who received sorbed B. bifidum 1, by the 10th day of treatment, the frequency of weakness was 32% lower (RR 0.55 [95% CI 0.24–0.73], OR 0.25 [0.11–0.59]); hypoosmia/dysgeusia – by 22% (RR 0.42 [0.05–0.65], OR 0.40 [0.17–0.90]) and cough – by 24% (RR 0.39 [0.07–0.60], OR 0.38 [0.17–0.84]). B. bifidum 1 reduced the average duration of weakness by 3 days [1.1–4.9], hypoosmia/dysgeusia by 3.2 days [1.3–5.1], cough by 1.9 days [0.4–3,4], dyspnea – by 1.8 days [0.7–2.7], diarrhea – by 1.7 days [0.1–3.5]; reduced the risk of antibiotic-associated diarrhea by 20% (RR 0.77 [0.24–0.93], OR 0.18 [0.05–0.68]). Due to the deterioration of the condition and the increase in the symptoms of respiratory failure, additional treatment was required less often by 24% (p=0.005). After the end of the intervention, the frequency of virologic debridement, levels of CRP, leukocytes, lymphocytes, platelets and the degree of lung damage on computed tomography did not statistically differ in the compared groups. No side effects of B. bifidum 1 (5×108 KОЕ) have been identified.

Conclusion. The use of sorbed B. bifidum 1 (5×108 KОЕ) improved the well-being of patients without risk factors with moderate viral (SARS-CoV-2) pneumonia and reduced the duration of diarrheal syndrome in a short time. The safety profile of their use was high. More research is needed to clarify the anti-inflammatory effects of the sorbed probiotic.

About the authors

Elena R. Meskina

Vladimirsky Moscow Regional Research Clinical Institute

Author for correspondence.
Email: meskinaelena@rambler.ru
ORCID iD: 0000-0002-1960-6868

д.м.н., зав. отд-нием детских инфекций отд. терапии

Russian Federation, Moscow

Elena E. Tselipanova

Vladimirsky Moscow Regional Research Clinical Institute

Email: meskinaelena@rambler.ru
ORCID iD: 0000-0002-0586-8402

к.м.н., ст. науч. сотр. от-ния детских инфекций отд. терапии

Russian Federation, Moscow

Marima K. Khadisova

Vladimirsky Moscow Regional Research Clinical Institute

Email: meskinaelena@rambler.ru
ORCID iD: 0000-0001-8293-6643

к.м.н., науч. сотр. отд-ния детских инфекций отд. терапии

Russian Federation, Moscow

Lidiya A. Galkina

Vladimirsky Moscow Regional Research Clinical Institute

Email: meskinaelena@rambler.ru
ORCID iD: 0000-0002-0052-2867

к.м.н., ст. науч. сотр. отд-ния детских инфекций отд. терапии

Russian Federation, Moscow

Tatyana V. Stashko

Dovodedovo Central Town Hospital

Email: meskinaelena@rambler.ru
ORCID iD: 0000-0001-9654-9863

врач-инфекционист инфекционного отд-ния ДЦГБ

Russian Federation, Dovodedovo

References

  1. Министерство здравоохранения Российской Федерации. Временные методические рекомендации: профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). Версия 10 (08.02.2021). Режим доступа: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/054/588/original/%D0%92%D1%80%D0%B5%D0%BC%D0%B5%D0%BD%D0%BD%D1%8B%D0%B5_%D0%9C%D0%A0_COVID-19_%28v.10%29-08.02.2021_%281%29.pdf. Ссылка активна на: 16.03.2021 [Ministry of Health of the Russian Federation. Interim Guidelines: Prevention, Diagnosis and Treatment of Novel Coronavirus Infection (COVID-19). Version 10 (02/08/2021). Available at: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/054/588/original/%D0%92%D1%80%D0%B5%D0%BC%D0%B5%D0%BD%D0%BD%D1%8B%D0%B5_%D0%9C%D0%A0_COVID-19_%28v.10%29-08.02.2021_%281%29.pdf. Accessed: 16.03.2021 (In Russ.)].
  2. Stasi C, Fallani S, Voller F, Silvestri C. Treatment for COVID-19: An overview. Eur J Pharmacol. 2020;889:173644. doi: 10.1016/j.ejphar.2020.173644
  3. Artese A, Svicher V, Costa G, et al. Current status of antivirals and druggable targets of SARSCoV-2 and other human pathogenic coronaviruses. Drug Resist Updat. 2020;53:100721. doi: 10.1016/j.drup.2020.100721
  4. Siemieniuk RA, Bartoszko JJ, Ge L, et al. Drug treatments for Covid-19: living systematic review and network meta-analysis. BMJ. 2020;370:m2980. doi: 10.1136/bmj.m2980. Update in: BMJ. 2020;370:m3536 (Update in: BMJ. 2020;371:m4852).
  5. ВОЗ. Лекарственная терапия при COVID-19. Вариативные рекомендации 20 ноября 2020 года. Режим доступа: https://apps.who.int/iris/bitstream/handle/10665/336729/WHO-2019-nCov-remdesivir-2020.1-rus.pdf?sequence=7&isAllowed=y. Ссылка активна на: 23.01.2020 [WHO. Drug therapy for COVID-19. Variable Recommendations November 20, 2020. Available at: https://apps.who.int/iris/bitstream/handle/10665/336729/WHO-2019-nCov-remdesivir-2020.1-rus.pdf?sequence=7&isAllowed=y. Accessed: 23.01.2020 (In Russ.)].
  6. Segal JP, Mak JWY, Mullish BH, et al. The gut microbiome: an under-recognised contributor to the COVID-19 pandemic? Therap Adv Gastroenterol. 2020;13:1-14. doi: 10.1177/1756284820974914
  7. McIlroy JR, Mullish BH, Goldenberg SD, et al. Intestinal microbiome transfer, a novel therapeutic strategy for COVID-19 induced hyperinflammation?: In reply to, ‘COVID-19: Immunology and treatment options’, Felsenstein, Herbert McNamara et al. 2020’. Clin Immunol. 2020;218:108542. doi: 10.1016/j.clim.2020.108542
  8. Ahlawat S, Asha, Sharma KK. Immunological co-ordination between gut and lungs in SARS-CoV-2 infection. Virus Res. 2020;286:198103. doi: 10.1016/j.virusres.2020.198103
  9. Yeoh YK, Zuo T, Lui GC, et al. Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19. Gut. 2021:70(4):698-706. doi: 10.1136/gutjnl-2020-323020
  10. Geva-Zatorsky N, Sefik E, Kua L, et al. Mining the Human Gut Microbiota for Immunomodulatory Organisms. Cell. 2017;168(5): 928-43.e11. doi: 10.1016/j.cell.2017.01.022
  11. Zuo T, Liu Q, Zhang F, et al. Depicting SARS-CoV-2 faecal viral activity in association with gut microbiota composition in patients with COVID-19. Gut. 2021;70(2):276-84. doi: 10.1136/gutjnl-2020-322294
  12. Gohil K, Samson R, Dastager S, Dharne M. Probiotics in the prophylaxis of COVID-19: something is better than nothing. 3 Biotech. 2021;11(1):1. doi: 10.1007/s13205-020-02554-1
  13. Larenas-Linnemann D, Rodríguez-Pérez N, Arias-Cruz A, et al. Enhancing innate immunity against virus in times of COVID-19: Trying to untangle facts from fictions. World Allergy Organ J. 2020;13(11):100476. doi: 10.1016/j.waojou.2020.100476
  14. Miller MD, Paradis CF, Houck PR, et al. Rating chronic medical illness burden in geropsychiatric practice and research: application of the Cumulative Illness Rating Scale. Psychiatry Res. 1992;41(3):237-48. doi: 10.1016/0165-1781(92)90005-n
  15. Ware JЕ, Snow KK, Kosinski М, Gandek В. Sf-36 Health Survey: Manual and Interpretation Guide. Lincoln RI: Quality Metric Incorporated, 2000.
  16. Gautret P, Million M, Jarrot PA, et al. Natural history of COVID-19 and therapeutic options. Expert Rev Clin Immunol. 2020;16(12):1159-84. doi: 10.1080/1744666X.2021.1847640
  17. Santos REA, da Silva MG, do Monte Silva MCB, et al. Onset and duration of symptoms of loss of smell/taste in patients with COVID-19: A systematic review. Am J Otolaryngol. 2021;42(2):102889. doi: 10.1016/j.amjoto.2020.102889
  18. Kavaz E, Tahir E, Bilek HC, et al. Clinical significance of smell and taste dysfunction and other related factors in COVID-19. Eur Arch Otorhinolaryngol. 2021;1-10. doi: 10.1007/s00405-020-06503-9
  19. Vaira LA, Lechien JR, Khalife M, et al. Psychophysical Evaluation of the Olfactory Function: European Multicenter Study on 774 COVID-19 Patients. Pathogens. 2021;10(1):62. doi: 10.3390/pathogens10010062
  20. Giacomelli A, Pezzati L, Conti F, et al. Self-reported Olfactory and Taste Disorders in Patients With Severe Acute Respiratory Coronavirus 2 Infection: A Cross-sectional Study. Clin Infect Dis. 2020;71(15): 889-90. doi: 10.1093/cid/ciaa330
  21. Tobin MJ, Laghi F, Jubran A. Why COVID-19 Silent Hypoxemia Is Baffling to Physicians. Am J Respir Crit Care Med. 2020;202(3):356-60. doi: 10.1164/rccm.202006-2157CP
  22. Nouri-Vaskeh M, Sharifi A, Khalili N, et al. Dyspneic and non-dyspneic (silent) hypoxemia in COVID-19: Possible neurological mechanism. Clin Neurol Neurosurg. 2020;198:106217. doi: 10.1016/j.clineuro.2020.106217
  23. Gou W, Fu Y, Yue L, et al. Gut microbiota may underlie the predisposition of healthy individuals to COVID-19. MedRix. 2020:1-44. doi: 10.1101/2020.04.22.20076091
  24. Shahbazi R, Yasavoli-Sharahi H, Alsadi N, et al. Probiotics in Treatment of Viral Respiratory Infections and Neuroinflammatory Disorders. Molecules. 2020;25(21):4891. doi: 10.3390/molecules25214891
  25. Mazidi M, Rezaie P, Ferns GA, Vatanparast H. Impact of Probiotic Administration on Serum C-Reactive Protein Concentrations: Systematic Review and Meta-Analysis of Randomized Control Trials. Nutrients. 2017;9(1):20. doi: 10.3390/nu9010020
  26. Pan F, Ye T, Sun P, et al. Time Course of Lung Changes at Chest CT during Recovery from Coronavirus Disease 2019 (COVID-19). Radiology. 2020;295(3):715-21. doi: 10.1148/radiol.2020200370
  27. Hani C, Trieu NH, Saab I, et al. COVID-19 pneumonia: A review of typical CT findings and differential diagnosis. Diagn Interv Imaging. 2020;101(5):263-8. doi: 10.1016/j.diii.2020.03.014

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Average total score (M ± SD) of the severity of disease manifestations on the day of treatment in the intervention and control groups

Download (75KB)

Copyright (c) 2021 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies