Nuclear medicine and molecular imaging in clinical practice: yesterday, today and tomorrow

Cover Page

Cite item

Full Text

Abstract

Over the past 40 years, nuclear medicine has grown to be the largest non-invasive diagnostic and therapeutic industry in the world, playing a pivotal role in various fields and disciplines of clinical practice and contributing to improved quality of life and patient prognosis. Over the first 20 years of the XXI century, the number of radionuclide procedures in the world has increased significantly, primarily due to innovations in radiopharmaceuticals, continuous improvement of the technical properties of equipment and the expansion of the boundaries of multimodal imaging. The review examines the historical and current trends in the development of nuclear medicine in the world and in Russia, including those related to radionuclide diagnostics, therapy and theranostics.

About the authors

Vladimir B. Sergienko

National Medical Research Center of Cardiology

Email: a.ansheles@gmail.com
ORCID iD: 0000-0002-0487-6902

doctor of medical sciences, prof., hands. dep. radionuclide diagnostics and PET

Russian Federation, Moscow

Aleksei A. Ansheles

National Medical Research Center of Cardiology

Author for correspondence.
Email: a.ansheles@gmail.com
ORCID iD: 0000-0002-2675-3276

Doctor of Medical Sciences, Art. scientific. employee of the department of radionuclide diagnostics and PET

Russian Federation, Moscow

References

  1. Hevesy G. The Absorption and Translocation of Lead by Plants: A Contribution to the Application of the Method of Radioactive Indicators in the Investigation of the Change of Substance in Plants. Biochem J. 1923;17(4-5):439-45. doi: 10.1042/bj0170439
  2. Blumgart HL, Yens OC. Studies on the velocity of blood flow: I. The Method Utilized. J Clin Invest. 1927;4(1):1-13. doi: 10.1172/JCI100106
  3. Patton DD. The birth of nuclear medicine instrumentation: Blumgart and Yens, 1925. J Nucl Med. 2003;44(8):1362-5.
  4. Hahn LA, Hevesy GC, Lundsgaard EC. The circulation of phosphorus in the body revealed by application of radioactive phosphorus as indicator. Biochem J. 1937;31(10):1705-9. doi: 10.1042/bj0311705
  5. Hahn LA, Hevesy GC, Rebbe OH. Do the potassium ions inside the muscle cells and blood corpuscles exchange with those present in the plasma? Biochem J. 1939;33(10):1549-58. doi: 10.1042/bj0331549
  6. Бочкарев В.В., Брежнева Н.Е., Кулиш Е.Е. Прогресс в области получения и производства изотопов. Атомная энергия. 1969;26(2):106-14 [Bochkarev VV, Brezhneva NE, Kulish EE. Progress in the production and production of isotopes. Atomic Energy. 1969;26(2):106-14 (In Russ.)].
  7. McKillop JH. Thallium 201 scintigraphy. West J Med. 1980;133(1):26-43.
  8. Чазов Е.И, Крамер А.А., Эвентов А.З., и др. Прямая визуальная диагностика острого инфаркта миокарда с пирофосфатом 99mTc. Терапевтический архив. 1977;49(6):12-6 [Chazov EI, Kramer AA, Eventov AZ, et al. Direct visual diagnosis of acute myocardial infarction with 99mTc pyrophosphate. Terapevticheskii Arkhiv (Ter. Arkh.). 1977;49(6):12-6 (In Russ.)].
  9. Соловьев В.В., Попов В.Г., Сергиенко В.Б., и др. Радионуклидная диагностика больных острым инфарктом миокарда. Тезисы докладов IX Всемирного конгресса кардиологов. 1982;1:0667 [Soloviev VV, Popov VG, Sergienko VB, et al. Radionuclide diagnostics of patients with acute myocardial infarction. Abstracts of the IX World Congress of Cardiology. 1982;1:0667 (In Russ.)].
  10. van Sluis J, de Jong J, Schaar J, et al. Performance Characteristics of the Digital Biograph Vision PET/CT System. J Nucl Med. 2019;60(7):1031-6. doi: 10.2967/jnumed.118.215418
  11. Mayerhoefer ME, Prosch H, Beer L, et al. PET/MRI versus PET/CT in oncology: a prospective single-center study of 330 examinations focusing on implications for patient management and cost considerations. Eur J Nucl Med Mol Imaging. 2019;47(1):51-60. doi: 10.1007/s00259-019-04452-y
  12. Badawi RD, Shi H, Hu P, et al. First Human Imaging Studies with the EXPLORER Total-Body PET Scanner. J Nucl Med. 2019;60(3):299-303. doi: 10.2967/jnumed.119.226498
  13. Jadvar H, Colletti PM, Delgado-Bolton R, et al. Appropriate Use Criteria for18F-FDG PET/CT in Restaging and Treatment Response Assessment of Malignant Disease. J Nucl Med. 2017;58(12):2026-37. doi: 10.2967/jnumed.117.197988
  14. Boellaard R, Delgado-Bolton R, Oyen WJG, et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging. 2014;42(2):328-54. doi: 10.1007/s00259-014-2961-x
  15. Eder M, Schäfer M, Bauder-Wüst U, et al. 68Ga-Complex Lipophilicity and the Targeting Property of a Urea-Based PSMA Inhibitor for PET Imaging. Bioconjug Chem. 2012;23(4):688-97. doi: 10.1021/bc200279b
  16. Giesel FL, Hadaschik B, Cardinale J, et al. F-18 labelled PSMA-1007: biodistribution, radiation dosimetry and histopathological validation of tumor lesions in prostate cancer patients. Eur J Nucl Med Mol Imaging. 2017;44(4):678-88. doi: 10.1007/s00259-016-3573-4
  17. Fanti S, Minozzi S, Antoch G, et al. Consensus on molecular imaging and theranostics in prostate cancer. Lancet Oncol. 2018;19(12):e696-e708. doi: 10.1016/s1470-2045(18)30604-1
  18. Fendler WP, Eiber M, Beheshti M, et al. 68Ga-PSMA PET/CT: Joint EANM and SNMMI procedure guideline for prostate cancer imaging: version 1.0. Eur J Nucl Med Mol Imaging. 2017;44(6):1014-24. doi: 10.1007/s00259-017-3670-z
  19. Nanni C, Zanoni L, Bach-Gansmo T, et al. [18F]Fluciclovine PET/CT: joint EANM and SNMMI procedure guideline for prostate cancer imaging–version 1.0. Eur J Nucl Med Mol Imaging. 2019;47(3):579-91. doi: 10.1007/s00259-019-04614-y
  20. Virgolini I, Ambrosini V, Bomanji JB, et al. Procedure guidelines for PET/CT tumour imaging with 68Ga-DOTA-conjugated peptides: 68Ga-DOTA-TOC, 68Ga-DOTA-NOC, 68Ga-DOTA-TATE. Eur J Nucl Med Mol Imaging. 2010;37(10):2004-10. doi: 10.1007/s00259-010-1512-3
  21. Hutton BF, Erlandsson K, Thielemans K. Advances in clinical molecular imaging instrumentation. Clin Transl Imaging. 2018;6(1):31-45. doi: 10.1007/s40336-018-0264-0
  22. Gormsen LC, Haraldsen A, Kramer S, et al. A dual tracer 68Ga-DOTANOC PET/CT and 18F-FDG PET/CT pilot study for detection of cardiac sarcoidosis. EJNMMI Res. 2016;6(1). doi: 10.1186/s13550-016-0207-6
  23. Tarkin JM, Calcagno C, Dweck MR, et al. 68Ga-DOTATATE PET Identifies Residual Myocardial Inflammation and Bone Marrow Activation After Myocardial Infarction. J Am Coll Cardiol. 2019;73(19):2489-91. doi: 10.1016/j.jacc.2019.02.052
  24. Tarkin JM, Joshi FR, Evans NR, et al. Detection of Atherosclerotic Inflammation by 68Ga-DOTATATE PET Compared to [18F]FDG PET Imaging. J Am Coll Cardiol. 2017;69(14):1774-91. doi: 10.1016/j.jacc.2017.01.060
  25. Taïeb D, Hicks RJ, Hindié E, et al. European Association of Nuclear Medicine Practice Guideline/Society of Nuclear Medicine and Molecular Imaging Procedure Standard 2019 for radionuclide imaging of phaeochromocytoma and paraganglioma. Eur J Nucl Med Mol Imaging. 2019;46(10):2112-37. doi: 10.1007/s00259-019-04398-1
  26. Lopci E, Grassi I, Chiti A, et al. PET radiopharmaceuticals for imaging of tumor hypoxia: a review of the evidence. Am J Nucl Med Mol Imaging. 2014;4(4):365-84.
  27. Bollineni VR, Kramer GM, Jansma EP, et al. A systematic review on [18F]FLT-PET uptake as a measure of treatment response in cancer patients. Eur J Cancer. 2016;55:81-97. doi: 10.1016/j.ejca.2015.11.018
  28. Kratochwil C, Flechsig P, Lindner T, et al. 68Ga-FAPI PET/CT: Tracer Uptake in 28 Different Kinds of Cancer. J Nucl Med. 2019;60(6):801-05. doi: 10.2967/jnumed.119.227967
  29. Chae SY, Ahn SH, Kim S-B, et al. Diagnostic accuracy and safety of 16α-[18F]fluoro-17β-oestradiol PET-CT for the assessment of oestrogen receptor status in recurrent or metastatic lesions in patients with breast cancer: a prospective cohort study. Lancet Oncol. 2019;20(4):546-55. doi: 10.1016/s1470-2045(18)30936-7
  30. Bensch F, Brouwers AH, Lub-de Hooge MN, et al. 89Zr-trastuzumab PET supports clinical decision making in breast cancer patients, when HER2 status cannot be determined by standard work up. Eur J Nucl Med Mol Imaging. 2018;45(13):2300-06. doi: 10.1007/s00259-018-4099-8
  31. Santhanam P, Taieb D, Solnes L, et al. Utility of I-124 PET/CT in identifying radioiodine avid lesions in differentiated thyroid cancer: a systematic review and meta-analysis. Clin Endocrinol (Oxf). 2017;86(5):645-51. doi: 10.1111/cen.13306
  32. Beheshti M, Mottaghy FM, Paycha F, et al. Correction to: 18F-NaF PET/CT: EANM procedure guidelines for bone imaging. Eur J Nucl Med Mol Imaging. 2017;45(2):322. doi: 10.1007/s00259-017-3874-2
  33. Morbelli S, Esposito G, Arbizu J, et al. EANM practice guideline/SNMMI procedure standard for dopaminergic imaging in Parkinsonian syndromes 1.0. Eur J Nucl Med Mol Imaging. 2020;47(8):1885-912. doi: 10.1007/s00259-020-04817-8
  34. Nestor PJ, Altomare D, Festari C, et al. Clinical utility of FDG-PET for the differential diagnosis among the main forms of dementia. Eur J Nucl Med Mol Imaging. 2018;45(9):1509-25. doi: 10.1007/s00259-018-4035-y
  35. Minoshima S, Drzezga AE, Barthel H, et al. SNMMI Procedure Standard/EANM Practice Guideline for Amyloid PET Imaging of the Brain 1.0. J Nucl Med. 2016;57(8):1316-22. doi: 10.2967/jnumed.116.174615
  36. de Wilde A, van der Flier WM, Pelkmans W, et al. Association of Amyloid Positron Emission Tomography With Changes in Diagnosis and Patient Treatment in an Unselected Memory Clinic Cohort. JAMA Neurol. 2018;75(9):1062. doi: 10.1001/jamaneurol.2018.1346
  37. Law I, Albert NL, Arbizu J, et al. Joint EANM/EANO/RANO practice guidelines/SNMMI procedure standards for imaging of gliomas using PET with radiolabelled amino acids and [18F]FDG: version 1.0. Eur J Nucl Med Mol Imaging. 2018;46(3):540-57. doi: 10.1007/s00259-018-4207-9
  38. Davidson CQ, Phenix CP, Tai TC, et al. Searching for novel PET radiotracers: imaging cardiac perfusion, metabolism and inflammation. Am J Nucl Med Mol Imaging. 2018;8(3):200-27.
  39. Dilsizian V, Bacharach SL, Beanlands RS, et al. ASNC imaging guidelines/SNMMI procedure standard for positron emission tomography (PET) nuclear cardiology procedures. J Nucl Cardiol. 2016;23(5):1187-226. doi: 10.1007/s12350-016-0522-3
  40. Giammarile F, Schilling C, Gnanasegaran G, et al. The EANM practical guidelines for sentinel lymph node localisation in oral cavity squamous cell carcinoma. Eur J Nucl Med Mol Imaging. 2018;46(3):623-37. doi: 10.1007/s00259-018-4235-5
  41. Seibold U, Wängler B, Schirrmacher R, et al. Bimodal Imaging Probes for Combined PET and OI: Recent Developments and Future Directions for Hybrid Agent Development. Biomed Res Int. 2014;2014:1-13. doi: 10.1155/2014/153741
  42. van Leeuwen FWB, van Oosterom MN, Meershoek P, et al. Minimal-Invasive Robot-Assisted Image-Guided Resection of Prostate-Specific Membrane Antigen-Positive Lymph Nodes in Recurrent Prostate Cancer. Clin Nucl Med. 2019;44(7):580-81. doi: 10.1097/rlu.0000000000002600
  43. Langbein T, Weber WA, Eiber M. Future of Theranostics: An Outlook on Precision Oncology in Nuclear Medicine. J Nucl Med. 2019;60(Suppl. 2):13S-9S. doi: 10.2967/jnumed.118.220566
  44. Strosberg J, El-Haddad G, Wolin E, et al. Phase 3 Trial of 177Lu-Dotatate for Midgut Neuroendocrine Tumors. New Engl J Med. 2017;376(2):125-35. doi: 10.1056/nejmoa1607427
  45. Kratochwil C, Fendler WP, Eiber M, et al. EANM procedure guidelines for radionuclide therapy with 177Lu-labelled PSMA-ligands (177Lu-PSMA-RLT). Eur J Nucl Med Mol Imaging. 2019;46(12):2536-44. doi: 10.1007/s00259-019-04485-3
  46. Navalkissoor S, Grossman A. Targeted Alpha Particle Therapy for Neuroendocrine Tumours: The Next Generation of Peptide Receptor Radionuclide Therapy. Neuroendocrinology. 2018;108(3):256-64. doi: 10.1159/000494760
  47. Zustovich F, Barsanti R. Targeted α Therapies for the Treatment of Bone Metastases. Int J Mol Sci. 2017;19(1):74. doi: 10.3390/ijms19010074

Copyright (c) 2021 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies