COVID-19 and the small intestine

Cover Page

Cite item

Full Text

Abstract

The SARS-CoV-2 virus enters the body through the angiotensin-converting enzyme 2 (ACE-2), which is the entry point of the virus into the cell. The most dense fabric of ACE-2 is the lungs. The small intestine also contains large amounts of ACE-2 in the enterocyte membrane and is often involved in this process. Intestinal symptoms can appear at different stages of the disease. The review describes the mechanisms of interaction of SARS-CoV-2 with enterocytes, the fecal-oral route of infection, diagnosis and treatment of COVID-19 with intestinal symptoms.

About the authors

Sergei D. Bakharev

Loginov Moscow Clinical Scientific Center

Email: asfold@mail.ru
ORCID iD: 0000-0003-2213-6147

врач-гастроэнтеролог отд-ния невоспалительной патологии кишечника

Russian Federation, Moscow

Elena V. Baulo

Loginov Moscow Clinical Scientific Center

Email: asfold@mail.ru
ORCID iD: 0000-0002-8300-7608

мл. науч. сотр. отд-ния невоспалительной патологии кишечника

Russian Federation, Moscow

Svetlana V. Bykova

Loginov Moscow Clinical Scientific Center

Email: asfold@mail.ru
ORCID iD: 0000-0001-9576-2953

к.м.н., зав. отд-нием невоспалительной патологии кишечника

Russian Federation, Moscow

Saria R. Dbar

Loginov Moscow Clinical Scientific Center

Email: asfold@mail.ru
ORCID iD: 0000-0001-6516-7782

мл. науч. сотр. отд-ния невоспалительной патологии кишечника

Russian Federation, Moscow

Asfold I. Parfenov

Loginov Moscow Clinical Scientific Center

Author for correspondence.
Email: asfold@mail.ru
ORCID iD: 0000-0002-9782-4860

д.м.н., проф., зав. отд. патологии кишечника

Russian Federation, Moscow

References

  1. Decaro N, Desario C, Elia G, et al. Serological and molecular evidence that canine respiratory coronavirus is circulating in Italy. Vet Microbiol. 2007;121(3-4):225-30. doi: 10.1016/j.vetmic.2006.12.001
  2. Totura AL, Bavari S. Broad-spectrum coronavirus antiviral drug discovery. Expert Opin Drug Dis. 2019;14(4):397-412. doi: 10.1080/17460441.2019.1581171
  3. Tsang KW, Ho PL, Ooi GC, et al. A cluster of cases of severe acute respiratory syndrome in Hong Kong. N Engl J Med. 2003;348(20):1977-85. doi: 10.1056/NEJMoa030666
  4. Drosten C, Günther S, Preiser W, et al. Identifcation of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med. 2003;348(20):1967-76. doi: 10.1056/NEJMoa030747
  5. Jevšnik M, Steyer A, Pokorn M, et al. The Role of Human coronaviruses in Children Hospitalized for Acute Bronchiolitis, Acute Gastroenteritis, and Febrile Seizures: A 2-Year Prospective Study. PLoS One. 2016;11(5):e0155555. doi: 10.1371/journal.pone.0155555
  6. Chiu SS, Chan KH, Chu KW, et al. Human coronavirus NL63 infection and other coronavirus infections in children hospitalized with acute respiratory disease in Hong Kong, China. Clin Infect Dis. 2005;40(12):1721-9. doi: 10.1086/430301
  7. Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270-3. doi: 10.1038/s41586-020-2012-7
  8. Coronavirus disease 2019 (COVID-19) Situation Report – 39 1-7. Available at: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200228-sitrep-39-covid-19.pdf?sfvrsn=aa1b80a7_4
  9. Guan WJ, Ni ZY, Hu Y, et al. Clinical Characteristics of coronavirus Disease 2019 in China. N Engl J Med. 2020. doi: 10.1056/NEJMoa2002032
  10. Song Y, Liu P, Shi XL, et al. SARS-CoV-2 induced diarrhoea as onset symptom in patient with COVID-19. Gut. 2020. doi: 10.1136/gutjnl-2020-320891
  11. Zhang W, Du RH, Li B, et al. Molecular and serological investigation of 2019-nCoV infected patients: implication of multiple shedding routes. Emerg Microbes Infect. 2020;9(1):386-9.doi: 10.1080/22221751.2020.1729071
  12. Perlot T, Penninger JM. ACE2 – from the renin-angiotensin system to gut microbiota and malnutrition. Microbes Infect. 2013;15(13):866-73. doi: 10.1016/j.micinf.2013.08.003
  13. Camargo SM, Singer D, Makrides V, et al. Tissue-specifc amino acid transporter partners ACE2 and collectrin differentially interact with hartnup mutations. Gastroenterology. 2009;136(3):872-82.doi: 10.1053/j.gastro.2008.10.055
  14. Ding Y, He L, Zhang Q, et al. Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS-CoV) in SARS patients: implications for pathogenesis and virus transmission pathways. J Pathol. 2004;203(2):622-30. doi: 10.1002/path.1560
  15. Hamming I, Timens W, Bulthuis ML, et al. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A frst step in understanding SARS pathogenesis. J Pathol. 2004;203:631-7.doi: 10.1002/path.1570
  16. Kuba K, Imai Y, Rao S, et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med. 2005;11:875-9. doi: 10.1038/nm1267
  17. To KF, Lo AW. Exploring the pathogenesis of severe acute respiratory syndrome (SARS): the tissue distribution of the coronavirus (SARS-CoV) and its putative receptor, angiotensin-converting enzyme 2 (ACE2). J Pathol. 2004;203:740-3. doi: 10.1002/path.1597
  18. Mönkemüller K, Fry LC, Rickes S. COVID-19, coronavirus, SARS-CoV-2 and the small bowel. Rev Esp Enferm Dig. 2020;112(5):383-8. doi: 10.17235/reed.2020.7137/2020
  19. Perlman S, Netland J. Coronaviruses post-SARS: update on replication and pathogenesis. Nat Rev Microbiol. 2009;7(6):439-50.doi: 10.1038/nrmicro2147
  20. Jia HP, Look DC, Shi L, et al. ACE2 receptor expression and severe acute respiratory syndrome coronavirus infection depend on differentiation of human airway epithelia. J Virol. 2005;79(23):14614-21.doi: 10.1128/JVI.79.23.14614-14621.2005
  21. Yan R, Zhang Y, Li Y, et al. Structural basis for the recognition of the SARSCoV-2 by full-length human ACE2. Science. 2020.doi: 10.1126/science. abb2762
  22. Wrapp D, Wang N, Corbett KS, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020;367(6483):1260-3. doi:: 10.1126/science.abb2507
  23. Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020.doi: 10.1016/j.cell.2020.02.052
  24. Klimpel KR, Molloy SS, Thomas G, et al. Anthrax toxin protective antigen is activated by a cell-surface protease with the sequence specificity and catalytic properties of furin. Proc Natl Acad Sci USA. 1992;89:10277-81. doi: 10.1073/pnas.89.21.10277
  25. Danilczyk U, Penninger JM. Angiotensin-converting enzyme II in the heart and the kidney. Circ Res. 2006;98(4):463-71. doi: 10.1161/01. RES.0000205761.22353.5f
  26. Kleta R, Romeo E, Ristic Z, et al. Mutations in SLC6A19, encoding B0AT1, cause Hartnup disorder. Nat Genet. 2004;36(9):999-1002.doi: 10.1038/ng1405
  27. Hashimoto T, Perlot T, Rehman A, et al. ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation. Nature. 2012;487(7408):477-81. doi: 10.1038/nature11228
  28. Leung WK, To KF, Chan PK, et al. Enteric involvement of severe acute respiratory syndrome-associated coronavirus infection. Gastroenterology. 2003;125(4):1011-7. doi: 10.1016/j.gastro.2003.08.001
  29. Effenberger M, Grabherr F, Mayr L, et al. Faecal calprotectin indicates intestinal inflammation in COVID-19. Gut. 2020;69(8):1543-44.doi: 10.1136/gutjnl-2020-321388
  30. Xiao F, Tang M, Zheng X, et al. Evidence for gastrointestinal infection of SARS-CoV-2. Gastroenterology. 2020;158(6):1831-3.doi: 10.1053/j.gastro.2020.02.055. e11833
  31. Shi X, Gong E, Gao D, et al. Severe acute respiratory syndrome associated coronavirus is detected in intestinal tissues of fatal cases. Am J Gastroenterol. 2005;100(1):169-76. doi: 10.1111/j.1572-0241.2005.40377.x
  32. D’Amico F, Baumgart DC, Danese S, Peyrin-Biroulet L. Diarrhea during COVID-19 infection: pathogenesis, epidemiology, prevention, and management. Clin Gastroenterol Hepatol. 2020;18(8):1663-72.doi: 10.1016/j.cgh.2020.04.001
  33. Ahmed M. Coronavirus Disease 2019: A Gastroenterologist’s Perspective in May 2020. Gastroenterology Res. 2020;13(3):89-95.doi: 10.14740/gr1292
  34. Ai J-W, Zi H, Wang Y, et al. Clinical Characteristics of COVID-19 Patients With Gastrointestinal Symptoms: An Analysis of Seven Patients in China. Front Med. 2020;9(7):308. doi: 10.3389/fmed.2020.00308
  35. Young BE, Ong SWX, Kalimuddin S, et al. Epidemiologic Features and Clinical Course of Patients Infected With SARS-CoV-2 in Singapore. JAMA. 2020;323(15):1488-94. doi: 10.1001/jama.2020.3204
  36. Yang ZW, Li GW, Dai XL, et al. Three cases of COVID- 19 pharyngeal swab were still positive for fecal nucleic acid. Chinese J Digest. 2000:40
  37. Chen L, Lou J, Bai Y, Wang M. COVID-19 Disease With Positive Fecal and Negative Pharyngeal and Sputum Viral Tests. Am J Gastroenterol. 2020;115(5):790. doi: 10.14309/ajg.0000000000000610
  38. Mao R. Expert consensus on diagnosis and treatment of COVID-19 digestive system. Chin J Nat Med. 2020;100.doi: 10.3760/cma.j.cn112137-20200308-00645
  39. Omrani AS, Saad MM, Abdul-Matin M, et al. Ribavirin and interferon alfa2a for severe Middle East respiratory syndrome coronavirus infection: a retrospective cohort study. Lancet Infect Dis. 2014;14(11):1090-5. doi: 10.1016/S1473-3099(14)70920-X
  40. Cao B, Wang Y, Wen D, et al. A Trial of Lopinavir-Ritonavir in Adults Hospitalized with Severe Covid-19. N Engl J Med. 2020;382:1787-99. doi: 10.1056/NEJMoa2001282
  41. Warren TK, Wells J, Panchal RG, et al. Protection against filovirus diseases by a novel broad-spectrum nucleoside analogue BCX4430. Nature. 2014;508:402-5
  42. Sanders JM, Monogue ML, Jodlowski TZ, Cutrell JB. Pharmacologic Treatments for Coronavirus Disease 2019 (COVID-19): A Review. JAMA. 2020. doi: 10.1001/jama.2020.6019
  43. Gandhi RT, Lynch JB, Del Rio C. Mild or Moderate COVID-19. N Engl J Med. 2020. doi: 10.1056/NEJMcp2009249
  44. Li C, Liu P, Guo S-S, Zhao Z-G. Study on the mechanism and treatment of gastrointestinal symptoms in patients with severe acute respiratory syndrome (SARS) and middle east respiratory syndrome (MERS). Infect Dis Poverty. 2020;9(1):99. doi: 10.1186/s40249-020-00691-6
  45. Wei P-F. Diagnosis and treatment of pneumonia caused by novel coronavirus (trial version 7). General office of the Chinese health commission 2020. Chin Med J. 2020;133(9):1087-95. doi: 10.1097/CM9.0000000000000819
  46. Chen Y, Guo Y, Pan Y, and Zhao ZJ. Structure analysis of the receptor binding of 2019 nCoV. Biochem Biophys Res Commun. 2020;525(4):135-40. doi: 10.1016/j.bbrc.2020.02.071
  47. Hersberger L, Bargetzi L, Bargetzi A, et al. Nutritional risk screening (NRS 2002) is a strong and modifiable predictor risk score for short term and long term clinical outcomes: secondary analysis of a prospective randomized trial. Clin Nutr. 2019;39(9):2720-9. doi: 10.1016/j.clnu.2019.11.041
  48. Redd WD, Zhou JC, Hathorn KE, et al. Prevalence and Characteristics of Gastrointestinal Symptoms in Patients with SARS-CoV-2 Infection in the United States: A Multicenter Cohort Study. Gastroenterology. 2020;159(2):765-7. doi: 10.1053/j.gastro.2020.04.045
  49. Pan L, Mu M, Yang P, et al. Clinical Characteristics of COVID-19 Patients With Digestive Symptoms in Hubei, China: A Descriptive, Cross-Sectional, Multicenter Study. Am J Gastroenterol. 2020;115(5):766-833. doi: 10.14309/ajg.0000000000000620
  50. Luo S, Zhang X, Xu H. Don’t Overlook Digestive Symptoms in Patients With 2019 Novel Coronavirus Disease (COVID-19). Clin Gastroenterol Hepatol. 2020;18(7):1636-7. doi: 10.1016/j.cgh.2020.03.043

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Biophysical model of the penetration of the SARS-CoV-2 virus into the enterocyte [18].

Download (97KB)

Copyright (c) 2021 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies