Circulating microRNAs as potential biomarkers of chronic kidney disease


Cite item

Full Text

Abstract

Chronic kidney disease (CKD) is a supra - nosological term that reflects the progressive nature of chronic kidney diseases, which are based on the mechanisms of nephrosclerosis. Diagnosis of CKD at the earliest stages is of great importance, because it allows, by using therapeutic agents, to slow the progression of renal dysfunction and the development of cardiovascular complications. However, the currently available methods for diagnosing renal function impairment, including the determination of endogenous creatinine clearance, can detect renal dysfunction too late, when around 40-50% of the renal parenchyma is already reversibly or irreversibly damaged. In this regard, there is an active search for new, more sensitive and specific biomarkers for early diagnosis of CKD. Recent studies in cellular and animal models of CKD have demonstrated the important role of microRNA, a new class of posttranscriptional regulators of gene expression, in physiology and pathophysiology of kidneys. In particular, it has been shown that their expression profile in blood or urine can reflect changes in cells involved in a particular pathological process, since these cells can secrete a specific population of microRNAs, for example, through secretion of microRNA-containing exosomes. This gave grounds for considering increased or decreased expression of individual microRNAs in renal tissue or biological fluids (including urine) as new biomarkers for the diagnosis and monitoring of CKD. This review presents the results of recent experimental and clinical studies on these issues.

About the authors

K. A Aitbaev

Scientific and Research Institute of Molecular Biology and Medicine

д.м.н., проф., зав. лаб. патологической физиологии НИИ молекулярной биологии и медицины при Национальном центре кардиологии и терапии Минздрава Кыргызской Республики Bishkek, Kyrgyzstan

I. T Murkamilov

Akhunbaev Kyrgyz State Medical Academy; Kyrgyz Russian Slavic University named after the First President of Russia B.N. Yeltsin

Email: murkamilov.i@mail.ru
к.м.н., врач-нефролог, ассистент каф. факультетской терапии Кыргызской государственной медицинской академии им. И.К. Ахунбаева, председатель правления Общества специалистов по хронической болезни почек; e-mail: murkamilov.i@mail.ru; ORCID: 0000-0001-8513-9279 Bishkek, Kyrgyzstan

V. V Fomin

Sechenov First Moscow State Medical University (Sechenov University)

д.м.н., проф., зав. каф. факультетской терапии № 1, член-корр. РАН, проректор по лечебной работе ФГАОУ ВО «Первый МГМУ им. И.М. Сеченова»; Scopus Author ID: 34769949900 Moscow, Russia

References

  1. Codreanu I, Perico N, Sharm S.K, et al. Prevention programmes of progressive renal disease in developing nations. Nephrology. 2006;11:321-8. doi: 10.1111/j.1440-1797.2006.00587.x
  2. Chadban S, Briganti E.M, Kerr P.G, et al. Prevalence of kidney damage in Australian adults: the AusDiab kidney study. J Am Soc Nephrol. 2003;14 Suppl 2:S131-S138. PMID: 12819318
  3. Coresh J, Selvin E, Stevens L.A, et al. Prevalence of chronic kidney disease in the United States. JAMA J Am Med Assoc. 2007;298:2038-47. doi: 10.1001/jama.298.17.2038
  4. Hallan S.I, Coresh J, Astor B.C, et al. International comparison of the relationship of chronic kidney disease prevalence and ESRD risk. J Am Soc Nephrol. 2006;17:2275-84. doi: 10.1681/ASN.2005121273
  5. Zhang L, Zhang P, Wang F, et al. Prevalence and factors associated with CKD: a population study fr om Beijing. Am J Kidney Dis. 2008;51:373-84. doi: 10.1053/j.ajkd.2007.11.009
  6. Levey A.S, Atkins R, Coresh J, et al. Chronic kidney disease as a global public health problem: approaches and initiatives - a position statement from Kidney Disease Improving Global Outcomes. Kidney Int. 2007;72:247-59. doi: 10.1038/sj.ki.5002343
  7. World Health Organization. The Global Burden of Disease: 2004 Update. Geneva: World Health Organization, 2008.
  8. Khan Z, Pandey M. Role of kidney biomarkers of chronic kidney disease: An update. Saudi J Biol Sci. 2014;21:294-9. doi: 10.1016/j.sjbs.2014.07.003
  9. Viau A, Karoui K.E, Laouari D, et al. Lipocalin 2 is essential for chronic kidney disease in mice and human. J Clin Investig. 2010;120:4065-76. doi: 10.1172/JCI42004
  10. Hostetter T.H. Progression of renal disease and renal hypertrophy. Annu Rev Physiol. 1995;57:263-78. doi: 10.1146/annurev.ph.57.030195.001403
  11. Kliem V, Johnson R.J, Alpers C.E, et al. Mechanisms involved in the pathogenesis of tubulointerstitial fibrosis in 5/6-nephrectomized rats. Kidney Int. 1996;49:666-78. PMID: 8648907
  12. Pillebout E, Weitzman J.B, Burtin M, et al. JunD protects against chronic kidney disease by regulating paracrine mitogens. J Clin Investig. 2003;112:843-52. doi: 10.1172/JCI200317647
  13. Steubl D, Block M, Herbst V, et al. Plasma uromodulin correlates with kidney function and identifies early stages in chronic kidney disease patients. Medicine. 2016;95:e3011. doi: 10.1097/MD.0000000000003011
  14. Wasung M.E, Chawla L.S, Madero M. Biomarkers of renal function, which and when? Clin Chim Acta. 2015;438:350-7. doi: 10.1016/j.cca.2014.08.039
  15. Fink H.A, Ishani A, Taylor B.C, et al. Chronic Kidney Disease Stages 1-3: Screening, Monitoring, and Treatment; Agency for Healthcare Research and Quality. Rockville, MD, USA, 2012. PMID: 22439155
  16. Khurana R, Ranches G, Schafferer S, et al. Identification of urinary exosomal noncoding RNAs as novel biomarkers in chronic kidney disease. RNA. 2017;23:142-52. doi: 10.1261/rna.058834.116
  17. Liu Y. Cellular and molecular mechanisms of renal fibrosis. Nat Rev Nephrol. 2011;7:684-96. doi: 10.1038/nrneph.2011.149
  18. Mayer G. Capillary rarefaction, hypoxia, VEGF and angiogenesis in chronic renal disease. Nephrol Dial Transplant. 2011;26:1132-7. doi: 10.1093/ndt/gfq832
  19. Quaggin S.E, Kreidberg J.A. Development of the renal glomerulus: Good neighbours and good fences. Development. 2008;135:609-20. doi: 10.1242/dev.001081
  20. Бирагова М.С., Грачева С.А., Мартынов С.А. Нарушения фосфорно - кальциевого обмена у пациентов с сахарным диабетом и хронической болезнью почек. Сахарный диабет. 2012;(4):74-80.
  21. Barreto F.C, Barreto D.V, Liabeuf S, et al. Serum indoxyl sulfate is associated with vascular disease and mortality in chronic kidney disease patients. Clin J Am Soc Nephrol. 2009;4:1551-8. doi: 10.2215/CJN.03980609
  22. Смирнов А.В., Карунная А.В., Зарайский М.И. и др. Экспрессия микроРНК-21 в моче у пациентов с нефропатиями. Нефрология. 2014;18(6):59-63.
  23. Камышова Е.С., Бобкова И.Н. МикроРНК при хроническом гломерулонефрите: перспективные биомаркеры для диагностики и оценки прогноза. Терапевтический архив. 2017;89(6):89-96. doi: 10.17116/terarkh201789689-96
  24. Камышова Е.С., Бобкова И.Н., Кутырина И.М. Современные представления о роли микроРНК при диабетической нефропатии: потенциальные биомаркеры и мишени таргентной терапии. Сахарный диабет. 2017;20(1):42-50. doi: 10.14341/DM8237
  25. Wang F, Chen C, Wang D. Circulating microRNAs in cardiovascular disease: from biomarkers to therapeutic targets. Front Med. 2014;8:404-18. doi: 10.1007/s11684-014-0379-2
  26. Valadi H, Ekström K, Bossios A, et al. Exosome - mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9:654-9. doi: 10.1038/ncb1596
  27. Chim S.S, Shing T.K, Hung E.C, et al. Detection and characterization of placental microRNAs in maternal plasma. Clin Chem. 2008;54:482-90. doi: 10.1373/clinchem.2007.097972
  28. Van Craenenbroeck A.H, Ledeganck K.J, van Ackeren K, et al. Plasma levels of microRNA in chronic kidney disease: patterns in acute and chronic exercise. Am J Physiol Heart Circ Physiol. 2015;309:H2008-H2016. doi: 10.1152/ajpheart.00346.2015
  29. Zhou Y, Fang L, Lu Y, et al. Erythropoietin protects the tubular basement membrane by promoting the bone marrow to release extracellular vesicles containing tPA-targeting miR-144. Am J Physiol Renal Physiol. 2016;310:F27-F40. doi: 10.1152/ajprenal.00303.2015
  30. Villarroya Beltri C, Baixauli F, Guttierrez-Vazquez C, et al. Sorting it out: regulation of exosome loading. Semin Cancer Biol. 2014;28:3-13. doi: 10.1016/j.semcancer.2014.04.009
  31. Duttagupta R, Jiang R, Gollub J, et al. Impact of cellular miRNAs on circulating miRNA biomarker signatures. PLoS One. 2011;6:e20769. doi: 10.1371/journal.pone.0020769
  32. Chen X, Ba Y, Ma L, et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell. 2008;18(10):997-1006. doi: 10.1038/cr.2008.282
  33. Mitchell P.S, Parkin R.K, Kroh E.M, et al. Circulating microRNAs as stable blood - based markers for cancer detection. PNAS USA. 2008;105(30):10513-8. doi: 10.1073/pnas.0804549105
  34. Harvey S.J, Jarad G, Cunningham J, et al. Podocyte - specific deletion of dicer alters cytoskeletal dynamics and causes glomerular disease. J Am Soc Nephrol. 2008;19:2150-8. doi: 10.1681/ASN.2008020233
  35. Ho J, Ng K.H, Rosen S, et al. Podocyte - specific loss of functional microRNAs leads to rapid glomerular and tubular injury. J Am Soc Nephrol. 2008;19:2069-75. doi: 10.1681/ASN.2008020162
  36. Shi S, Yu L, Chiu C, et al. Podocyte - selective deletion of dicer induces proteinuria and glomerulosclerosis. J Am Soc Nephrol. 2008;19:2159-69. doi: 10.1681/ASN.2008030312
  37. Patel V, Hajarnis S, Williams D, et al. MicroRNAs regulate renal tubule maturation through modulation of Pkd1. J Am Soc Nephrol. 2012;23:1941-8. doi: 10.1681/ASN.2012030321
  38. Wei Q, Bhatt K, He H.Z, et al. Targeted deletion of Dicer from proximal tubules protects against renal ischemia - reperfusion injury. J Am Soc Nephrol. 2010;21:756-61. doi: 10.1681/ASN.2009070718
  39. Bhatt K, Zhou L, Mi Q.S, et al. MicroRNA-34a is induced via p53 during cisplatin nephrotoxicity and contributes to cell survival. Mol Med. 2010;16:409-16. doi: 10.2119/molmed.2010.00002
  40. Sequeira-Lopez M.L, Weatherford E.T, Borges G.R, et al. The microRNA processing enzyme dicer maintains juxtaglomerular cells. J Am Soc Nephrol. 2010;21:460-7. doi: 10.1681/ASN.2009090964
  41. Nagalakishmi V.K, Ren Q, Pugh M.M, et al. Dicer regulates the development of nephrogenic and ureteric compartments in mammalian kidney. Kidney Int. 2011;79:317-30. doi: 10.1038/ki.2010.385
  42. Chen N.X, Kiattisunthorn K, O’Neill K.D, et al. Decreased microRNA is involved in the vascular remodeling abnormalities in chronic kidney disease (CKD). PLoS One. 2013;8:e64558. doi: 10.1371/journal.pone.0064558
  43. Taibi F, Metzinger-Le Meuth V, M’Baya-Moutoula E, et al. Possible involvement of microRNAs in vascular damage in experimental chronic kidney disease. Biochim Biophys Acta. 2014;1842:88-98. doi: 10.1016/j.bbadis.2013.10.005
  44. Rangrez A.Y, M’Baya-Moutoula E, Metzinger-Le Meuth V, et al. Inorganic phosphate accelerates the migration of vascular smooth muscle cells: evidence for the involvement of miR-223. PLoS One. 2012;7:e47807. doi: 10.1371/journal.pone.0047807
  45. Harris T.A, Yamakuchi M, Ferlito M, et al. MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1. Proc Natl Acad Sci USA. 2008;105:1516-21. doi: 10.1073/pnas.0707493105
  46. Cordes K.R, Sheehy N.T, White M.P, et al. miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature. 2009;460:705-10. doi: 10.1038/nature08195
  47. M’Baya-Moutoula E, Louvet L, Metzinger-Le Meuth V, et al. High inorganic phosphate concentration inhibits osteoclastogenesis by modulating miR-223. Biochim Biophys Acta. 2015;1852(10 Pt A):2202-12. doi: 10.1016/j.bbadis.2015.08.003
  48. Lovren F, Pan Y, Quan A, et al. MicroRNA-145 targeted therapy reduces atherosclerosis. Circulation. 2012;126:S81-S90. doi: 10.1161/CIRCULATIONAHA.111.084186
  49. Chu J.Y.S, Sims-Lucas S, Bushnell D.S, et al. Dicer function is required in the metanephric mesenchyme for early kidney development. Am J Physiol Ren Physiol. 2014;306:F764-F772.
  50. Leopold J.A. MicroRNAs regulate vascular medial calcification. Cells. 2014;3(4):963-80. doi: 10.3390/cells3040963
  51. Lal M.A, Young K.W, Andag U. Targeting the podocyte to treat glomerular kidney disease. Drug Discov Today. 2015;20:1228-34. doi: 10.1016/j.drudis.2015.06.003
  52. Merscher S, Pedigo C.E, Mendez A.J. Metabolism, energetics, and lipid biology in the podocyte e cellular cholesterol - mediated glomerular injury. Front Endocrinol. 2014;5:169. doi: 10.3389/fendo.2014.00169
  53. Hoshi S, Shu Y, Yoshida Fб et al. Podocyte injury promotes progressive nephropathy in zucker diabetic fatty rats. Lab Investig. 2002;82:25-35. PMID: 11796823
  54. Nassirpour R, Raj D, Townsend R, Argyropoulos C. MicroRNA biomarkers in clinical renal disease: from diabetic nephropathy renal transplantation and beyond. Food Chem Toxicol. 2016;98:73-88. doi: 10.1016/j.fct.2016.02.018
  55. Mc Clelland A, Hagiwara S, Kantharidis P. Wh ere are we in diabetic nephropathy: MicroRNAs and biomarkers? Curr Opin Nephrol Hypertens. 2014;23:80-6. doi: 10.1097/01.mnh.0000437612.50040.ae
  56. Trionfini P, Benigni A, Remuzzi G. MicroRNAs in kidney physiology and disease. Nat Rev Nephrol. 2015;11:23-33. doi: 10.1038/nrneph.2014.202
  57. Kato M, Arce L, Natarajan R. MicroRNAs and their role in progressive kidney diseases. Clin J Am Soc Nephrol. 2009;4:1255-66. doi: 10.2215/CJN.00520109
  58. Chandrasekaran K, Karolina DS, Sepramaniam S, et al. Role of microRNAs in kidney homeostasis and disease. Kidney Int. 2012;81:617-27. doi: 10.1038/ki.2011.448
  59. Lawrie C.H, Gal S, Dunlop H.M, et al. Detection of elevated levels of tumor - associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol. 2008;141:672-675. doi: 10.1111/j.1365-2141.2008.07077.x
  60. Guay C, Regazzi R. Circulating microRNAs as novel biomarkers for diabetes mellitus. Nat Rev Endocrinol. 2013;9:513-21. doi: 10.1038/nrendo.2013.86
  61. Raffort J, Hinault C, Dumortier O, et al. Circulating micro RNAs and diabetes: potential applications in medical practise. Diabetologia. 2015;58:1978-92. doi: 10.1007/s00125-015-3680-y
  62. Min P.K, Chan S.Y. The biology of circulating microRNAs in cardiovascular disease. Eur J Clin Invest. 2015;45:860-74. doi: 10.1111/eci.12475
  63. Kaudwitz D, Zampetaki A, Mayr M. MicroRNA biomarkers for coronary artery disease? Curr Atheroscler Rep. 2015;17:70. doi: 10.1007/s11883-015-0548-z
  64. Neal C.S, Michael M.Z, Pimlott L.K, et al. Circulating microRNA expression is reduced in chronic kidney disease. Nephrol Dial Transplant. 2011;26:3794-802. doi: 10.1093/ndt/gfr485
  65. Rudnicki M, Perco P.D, Haene B, et al. Renal microRNA- and RNA-profiles in progressive chronic kidney disease. Eur J Clin Invest. 2016;46:213-26. doi: 10.1111/eci.12585
  66. Brigant B, Metzinger-Le Meuth V, Massy Z.A, et al. Serum microRNAs are altered in various stages of chronic kidney disease: a preliminary study. Clin Kidney J. 2017;10:30-7. doi: 10.1093/ckj/sfw060
  67. Matas A.J, Smith J.M, Skeans M.A, et al. OPTN/SRTR 2012 annual data report: Kidney. Am J Transplant. 2014;14:11-44. doi: 10.1111/ajt.12579
  68. Ben-Dov I.Z, Muthukumar T, Morozov P, et al. MicroRNA sequence profiles of human kidney allografts with or without tubulointerstitial fibrosis. Transplantation. 2012;94:1086-94. doi: 10.1097/TP.0b013e3182751efd
  69. Maluf D.G, Dumur C.I, Suh J.L, et al. The urine microRNA profile may help monitor post - transplant renal graft function. Kidney Int. 2014;85:439-49. doi: 10.1038/ki.2013.338
  70. Scian M.J, Maluf D.G, David K.G, et al. MicroRNA profiles in allograft tissues and paired urines associate with chronic allograft dysfunction with IF/TA. Am J Transplant. 2011;11:2110-22. doi: 10.1111/j.1600-6143.2011.03666.x
  71. Glowacki F, Savary G, Gnemmi V, et al. Increased circulating miR-21 levels are associated with kidney fibrosis. PLoS ONE. 2013;8:e58014. doi: 10.1371/journal.pone.0058014
  72. Lv L.L, Cao Y.H, Ni H.F, et al. MicroRNA-29c in urinary exosome/microvesicle as a biomarker of renal fibrosis. Am J Physiol Ren Physiol. 2013;305:F1220-F1227. doi: 10.1152/ajprenal.00148.2013

Copyright (c) 2019 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies