Gut microbiota is a factor of risk for obesity and type 2 diabetes

Cover Page

Cite item

Full Text

Abstract

Gut microbiota (GM) is a set of bacteria which colonize the gastrointestinal tract. GM and its active metabolites take part in intestinal and hepatic gluconeogenesis, in the synthesis of incretin hormones, and affect the regulation of appetite. Thus, GM and its metabolites participate in the homeostasis of carbohydrates and fats. An imbalance in the set of the intestinal flora and a disturbance of the production of active metabolites sharply increases the risk of developing obesity and type 2 diabetes. There are conflicting data in the literature on the role of specific microorganisms in the development of metabolic disorders. Research is needed to identify specific types of bacteria and their active metabolites which affect the development of obesity and type 2 diabetes.

About the authors

T. Y. Demidova

Pirogov Russian National Research Medical University

Email: miss.sapog@mail.ru
ORCID iD: 0000-0001-6385-540X
SPIN-code: 9600-9796
Scopus Author ID: 7003771623

д.м.н., проф., зав. каф. эндокринологии лечебного фак-та ФГБОУ ВО «РНИМУ им. Н.И. Пирогова»

Russian Federation, Moscow

K. G. Lobanova

Pirogov Russian National Research Medical University

Author for correspondence.
Email: miss.sapog@mail.ru
ORCID iD: 0000-0002-3656-0312
SPIN-code: 6044-1684

ассистент каф. эндокринологии лечебного фак-та ФГБОУ ВО «РНИМУ им. Н.И. Пирогова»

Russian Federation, Moscow

O. S. Oinotkinova

Pirogov Russian National Research Medical University; Lomonosov Moscow State University; Research Institute of Health Organization and Medical Management

Email: miss.sapog@mail.ru

ассистент каф. эндокринологии лечебного фак-та ФГБОУ ВО «РНИМУ им. Н.И. Пирогова»

Russian Federation, Moscow

References

  1. Hugon P, Dufour JC, Colson P, et al. A comprehensive repertoire of prokaryotic species identified in human beings. Lancet Infect Dis. 2015;15(10):1211-9. doi: 10.1016/S1473-3099(15)00293-5
  2. Nima H. Jazani, Javad Savoj, et al. Impact of Gut Dysbiosis on Neurohormonal Pathways in Chronic Kidney Disease. Diseases. 2019;7(1): 1. doi: 10.3390/diseases7010021
  3. Junjie Qin, Ruiqiang Li, et al. A human gut microbial gene catalog established by metagenomic sequencing. Nature. 2010;464(7285):59-65. doi: 10.1038/nature08821
  4. Ulker İ, Yildiran H. The effects of bariatric surgery on gut microbiota in patients with obesity: a review of the literature. Biosci Microbiota Food Health. 2019;38(1):3-9. doi: 10.12938/bmfh.18-018
  5. Moles L, Gómez M, et al. Bacterial Diversity in Meconium of Preterm Neonates and Evolution of Their Fecal Microbiota during the First Month of Life. PLoS One. 2013;8(6):e66986. doi: 10.1371/journal.pone.0066986
  6. Avershina E, Storrø O, Øien T, et al. Major faecal microbiota shifts in composition and diversity with age in a geographically restricted cohort of mothers and their children. FEMS Microbiol Ecol. 2014;87(Issue 1):280-90. doi: 10.1111/1574-6941.12223
  7. Katherine M. Hunt, James A. Foster, et al. Characterization of the Diversity and Temporal Stability of Bacterial Communities in Human Milk. PLoS One. 2011;6(6):e21313. doi: 10.1371/journal.pone.0021313
  8. Juan Miguel Rodríguez, Kiera Murphy, et al. The composition of the gut microbiota throughout life, with an emphasis on early life. Microb Ecol Health Dis. 2015;26:10.3402/mehd.v26.26050. doi: 10.3402/mehd.v26.26050
  9. Tanya Yatsunenko, Federico E. Rey, et al. Human gut microbiome viewed across age and geography. Nature. 2012;486(7402):222-7. doi: 10.1038/nature11053
  10. Nihal Hasan, Hongyi Yang. Factors affecting the composition of the gut microbiota, and its modulation. Peer J. 2019;7:e7502. doi: 10.7717/peerj.7502
  11. Thursby E, Juge N. Introduction to the human gut microbiota. Biochem J. 2017;474(11):1823-36. doi: 10.1042/BCJ20160510
  12. Rowland I, Gibson G, et al. Gut microbiota functions: metabolism of nutrients and other food components. Eur J Nutr. 2018;57(1):1-24. doi: 10.1007/s00394-017-1445-8
  13. Cummings JH, Pomare EW, Branch WJ, et al. Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut. 1987;28(10):1221-7. doi: 10.1136/gut.28.10.1221
  14. Louis P, Young P, Holtrop G, et al. Diversity of human colonic butyrate-producing bacteria revealed by analysis of the butyryl-CoA: acetate CoA-transferase gene. Environ Microbiol. 2010;12(2):304-14. doi: 10.1111/j.1462-2920.2009.02066.x
  15. Renan Corrêa-Oliveira, José Luís Fachi, et al. Regulation of immune cell function by short-chain fatty acids. Clin Transl Immunol. 2016;5(4):e73. doi: 10.1038/cti.2016.17
  16. Reichardt N, Duncan SH, et al. Phylogenetic distribution of three pathways for propionate production within the human gut microbiota. ISME J. 2014;8(6):1323-35. doi: 10.1038/ismej.2014.14
  17. Pingitore A, Chambers ES, Hill T, et al. The diet-derived short chain fatty acid propionate improves beta-cell function in humans and stimulates insulin secretion from human islets in vitro. Diabetes Obes Metab. 2017;19(2):257-65. doi: 10.1111/dom.12811
  18. Frost G, Sleeth ML, et al. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat Commun. 2014;5:3611. doi: 10.1038/ncomms4611
  19. Royalty JE, Konradsen G, Eskerod O, et al. Investigation of safety, tolerability, pharmacokinetics and pharmacodynamics of single and multiple doses of a long-acting α-MSH analogue in healthy overweight and obese subjects. J Clin Pharmacol. 2014;54(4):394-404. doi: 10.1002/jcph.211
  20. Asai M, Ramachandrappa S, Joachim M, et al. Loss of function of the melanocortin 2 receptor accessory protein 2 is associated with mammalian obesity. Science. 2013;341(6143):275-8. doi: 10.1126/ science.1233000.40
  21. Загоскин П.П., Загоскина И.П., Савельева Н.А., Ляляев В.А. Современные подходы к проблеме регуляции массы тела (обзор). СТМ. 2014;6(3):104-17 [Zagoskin PP, Zagoskina IP, Savelieva NА, Lyalyaev VА. Modern Approaches to the Problem of Body Weight Regulation (Review). Sovremennye tehnologii v medicine. 2014;6(3):104-17 (In Russ.)].
  22. Bäckberg M, Madjid N, Ogren SO, et al. Downregulated expression of agouti-related protein (AGRP) mRNA in the hypothalamic arcuate nucleus of hyperphagic and obese tub/tub mice. Brain Res Mol Brain Res. 2004;125(1-2):129-39. doi: 10.1016/j.molbrainres.2004.03.012
  23. Xinggui Shen, Mattias Carlström, et al. Microbial Regulation of Host Hydrogen Sulfide Bioavailability and Metabolism. Free Radic Biol Med. 2013;60:195-200. doi: 10.1016/j.freeradbiomed.2013.02.024
  24. Fadi N Salloum. Hydrogen sulfide and cardioprotection – Mechanistic insights and clinical translatability. Pharmacol Ther. 2015;152:11-7. doi: 10.1016/j.pharmthera.2015.04.004
  25. Wei Yang, Guangdong Yang, et al. Activation of KATP channels by H2S in rat insulin-secreting cells and the underlying mechanisms. J Physiol. 2005;569(Pt 2):519-31. doi: 10.1113/jphysiol.2005.097642
  26. Pichette J, Fynn-Sackey N, Gagnon J. Hydrogen Sulfide and Sulfate Prebiotic Stimulates the Secretion of GLP-1 and Improves Glycemia in Male Mice. Endocrinology. 2017;158(10):3416-25. doi: 10.1210/en.2017-00391
  27. Wu L, Yang W, Jia X, et al. Pancreatic islet overproduction of H2S and suppressed insulin release in Zucker diabetic rats. Lab Invest. 2009;89(1):59-67. doi: 10.1038/labinvest.2008.109
  28. Asif K Mustafa, Moataz M, et al. H2S Signals Through Protein S-Sulfhydration. Sci Signal. Author manuscript; available in PMC 2010 Dec 8. doi: 10.1126/scisignal.2000464
  29. Tang G, Zhang L, Yang G, et al. Hydrogen sulfide-induced inhibition of L-type Ca2+ channels and insulin secretion in mouse pancreatic beta cells. Diabetologia. 2013;56(3):533-41. doi: 10.1007/s00125-012-2806-8
  30. Pichette J, Gagnon J. Implications of Hydrogen Sulfide in Glucose Regulation: How H2S Can Alter Glucose Homeostasis through Metabolic Hormones. Oxid Med Cell Longev. 2016;2016:3285074. doi: 10.1155/2016/3285074
  31. Bala V, Rajagopal S, et al. Release of GLP-1 and PYY in response to the activation of G protein-coupled bile acid receptor TGR5 is mediated by Epac/PLC-ε pathway and modulated by endogenous H2S. Front Physiol. 2014;5:420. doi: 10.3389/fphys.2014.00420
  32. Tarun Bansal, Robert C Alaniz, et al. The bacterial signal indole increases epithelial-cell tight-junction resistance and attenuates indicators of inflammation. Proc Natl Acad Sci USA. 2010;107(1):228-33. doi: 10.1073/pnas.0906112107
  33. Chimerel C, Emery E, et al. Bacterial Metabolite Indole Modulates Incretin Secretion from Intestinal Enteroendocrine L Cells. Cell Rep. 2014;9(4):1202-8. doi: 10.1016/j.celrep.2014.10.032
  34. Jing Gao, Kang Xu, et al. Impact of the Gut Microbiota on Intestinal Immunity Mediated by Tryptophan Metabolism. Front Cell Infect Microbiol. 2018;8:13. doi: 10.3389/fcimb.2018.00013
  35. Camilleri M. Serotonin in the Gastrointestinal Tract. Curr Opin Endocrinol Diabetes Obes. 2009;16(1):53-9. PMID: 19115522.
  36. Yanqiao Zhang, Xuemei Ge, et al. Loss of FXR Protects against Diet-Induced Obesity and Accelerates Liver Carcinogenesis in ob/ob Mice. Mol Endocrinol. 2012;26(2):272-80. doi: 10.1210/me.2011-1157
  37. Houten SM, Watanabe M, Auwerx J. Endocrine functions of bile acids. EMBO J. 2006;25(7):1419-25. doi: 10.1038/sj.emboj.7601049
  38. Shapiro H, Kolodziejczyk AA, et al. Bile acids in glucose metabolism in health and disease. J Exp Med. 2018;215(2):383-96. doi: 10.1084/jem.20171965
  39. Potthoff MJ, Boney-Montoya J, et al. FGF15/19 Regulates Hepatic Glucose Metabolism By Inhibiting the CREB-PGC-1α Pathway. Cell Metab. 2011 Jun 8;13(6):729-38. doi: 10.1016/j.cmet.2011.03.019
  40. Yanqiao Zhang, Florence Ying Lee, et al. Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice. Proc Natl Acad Sci USA. 2006;103(4):1006-11. doi: 10.1073/pnas.0506982103
  41. Дедов И.И., Мельниченко Г.А., Шестакова М.В. и др. Национальные клинические рекомендации по лечению морбидного ожирения у взрослых. 3-й пересмотр (Лечение морбидного ожирения у взрослых). Ожирение и метаболизм. 2018;15(1):53-70 [Dedov II, Melnichenko GA, Shestakova MV, et al. Russian national clinical recommendations for morbid obesity treatment in adults. 3rd revision (Morbid obesity treatment in adults). Obesity and metabolism. 2018;15(1):53-70. doi: 10.14341/OMET2018153-70 (In Russ.)].
  42. Turnbaugh PJ, Ley RE, Mahowald MA, et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444(7122):1027-31. doi: 10.1038/nature05414
  43. Кравчук Е.Н., Неймарк А.Е., Гринева Е.Н., Галагудза М.М. Регуляция метаболических процессов, опосредованная кишечной микрофлорой. Сахарный диабет. 2016;19(4):280-5 [Kravchuk EN, Neimark AE, Grineva EN, et al. The role of gut microbiota in metabolic regulation. Diabetes Mellitus. 2016;19(4):280-5. doi: 10.14341/DM7704 (In Russ.)].
  44. Schwiertz A, Taras D, Schäfer K, et al. Microbiota and SCFA in lean and overweight healthy subjects. Obesity (Silver Spring). 2010;18(1):190-5. doi: 10.1038/oby.2009.167
  45. Turnbaugh PJ, Ley RE, Mahowald MA, et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444(7122):1027-31. doi: 10.1038/nature05414
  46. Ley RE, Bäckhed F, et al. Obesity alters gut microbial ecology. Proc Natl Acad Sci USA. 2005;102(31):11070-5. doi: 10.1073/pnas.0504978102
  47. Turnbaugh PJ, Hamady M, et al. A core gut microbiome in obese and lean twins. Nature. 2009;457(7228):480-4. Nature. 2009;457(7228):480-4. doi: 10.1038/nature07540
  48. Turnbaugh PJ, Ley RE, Mahowald MA, et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444(7122):1027-31. doi: 10.1038/nature05414
  49. Armougom F, HenryM, et al. Monitoring Bacterial Community of Human Gut Microbiota Reveals an Increase in Lactobacillus in Obese Patients and Methanogens in Anorexic Patients. PLoS One. 2009;4(9):e7125. doi: 10.1371/journal.pone.0007125
  50. Anni Woting, Nora Pfeiffer, et al. Clostridium ramosum Promotes High-Fat Diet-Induced Obesity in Gnotobiotic Mouse Models. mBio. 2014;5(5):e01530-14. doi: 10.1128/mBio.01530-14
  51. Karlsson F, Tremaroli V, et al. Assessing the Human Gut Microbiota in Metabolic Diseases. Diabetes. 2013;62(10):3341-9. doi: 10.2337/db13-0844
  52. Дедов И.И., Шестакова М.В., Майоров А.Ю. и др. Алгоритмы специализированной медицинской помощи больным сахарным диабетом. 9-й вып. (доп.). М., 2019 [Dedov II, Shestakova MV, Mayorov AYu, et al. Standards of specialized diabetes care. 9th Ed. (revised). Мoscow, 2019. doi: 10.14341/DM221S1(In Russ.)].
  53. Schwartz SS, Epstein S, et al. The Time Is Right for a New Classification System for Diabetes: Rationale and Implications of the β-Cell – Centric Classification Schema. Diabetes Care. 2016;39(2):179-86. doi: 10.2337/dc15-1585
  54. Cani PD, Amar J, Iglesias MA, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007;56(7):1761-72. doi: 10.2337/db06-1491
  55. Creely SJ, McTernan PG, Kusminski CM, et al. Lipopolysaccharide activates an innate immune system response in human adipose tissue in obesity and type 2 diabetes. Am J Physiol Endocrinol Metab. 2007;292(3):E740-7. doi: 10.1152/ajpendo.00302.2006
  56. Noce A, Marrone G, et al. Impact of Gut Microbiota Composition on Onset and Progression of Chronic Non-Communicable Diseases. Nutrients. 2019;11(5):1073. doi: 10.3390/nu11051073
  57. Sikalidis AK, Maykish A. The Gut Microbiome and Type 2 Diabetes Mellitus: Discussing a Complex Relationship. Biomedicines. 2020;8(1).pii: E8. doi: 10.3390/biomedicines8010008
  58. GurungM, Li Zh, You H, et al. Role of gut microbiota in type 2 diabetes pathophysiology. E Bio Med. 2020;51:102590. doi: 10.1016/j.ebiom.2019.11.051
  59. Furet J-P, Kong L-Ch, et al. Differential Adaptation of Human Gut Microbiota to Bariatric Surgery–Induced Weight Loss. Diabetes. 2010;59(12):3049-57. doi: 10.2337/db10-0253
  60. Дедов И.И., Шестакова М.В. и др. Сахарный диабет типа 2: от теории к практике. М.: Медицинское информационное агентство, 2016 [Dedov II, Shestakova MV, et al. Type 2 diabetes mellitus: from theory to practice. Moscow: Medical information Agency, 2016 (In Russ.)].
  61. Qin J, Li Y, Cai Z, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490(7418):55-60. doi: 10.1038/nature11450
  62. Karlsson FH, Tremaroli V, Nookaew I, et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature. 2013;498(7452):99-103. doi: 10.1038/nature12198
  63. Covasa M, Stephen RW, et al. Intestinal Sensing by Gut Microbiota: Targeting Gut Peptides. Front Endocrinol (Lausanne). 2019;10:82. doi: 10.3389/fendo.2019.00082
  64. Baothman OA, Zamzami MA, et al. The role of Gut Microbiota in the development of obesity and Diabetes. Lipids Health Dis. 2016;15:108. doi: 10.1186/s12944-016-0278-4
  65. Egshatyan L, Kashtanova D, Popenko A, et al. Gut microbiota and diet in patients with different glucose tolerance. Endocr Connect. 2016;5(1):1-9. doi: 10.1530/EC-15-0094.
  66. Дзгоева Ф.Х., Егшатян Л.В. Кишечная микробиота и сахарный диабет типа 2. Эндокринология: новости, мнения, обучение. 2018;7(3):55-63 [Dzgoeva FKh, Egshatyan LV. Intestinal microbiota and type 2 diabetes mellitus. Endocrinology: News, Opinions, Training. 2018;7(3):55-63. doi: 10.24411/2304-9529-2018-13005 (In Russ.)].
  67. Adeshirlarijaney A, Gewirtz AT. Considering gut microbiota in treatment of type 2 diabetes mellitus. Gut Microbes. 2020. doi: 10.1080/19490976.2020.1717719
  68. Holscher HD. Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes. 2017;8(2):172-84. doi: 10.1080/19490976.2017.1290756
  69. Weickert MO, Pfeiffer AFH. Impact of Dietary Fiber Consumption on Insulin Resistance and the Prevention of Type 2 Diabetes. J Nut. 2018;148(Issue 1):7-12. doi: 10.1093/jn/nxx008
  70. Weickert MO, Pfeiffer AFH. Metabolic Effects of Dietary Fiber Consumption and Prevention of Diabetes. J Nutr. 2008;138(3):439-42. doi: 10.1093/jn/138.3.439
  71. Ahmadi Sh, Nagpalab R, Wanget Sh, et al. Prebiotics from acorn and sago prevent high-fat diet-induced insulin resistance via microbiome-gut-brain axis modulation. J Nutr Biochem. 2019;67:1-13. doi: 10.1016/j.jnutbio.2019.01.011
  72. Jalanka J, Major G, et al. The Effect of Psyllium Husk on Intestinal Microbiota in Constipated Patients and Healthy Controls. Int J Mol Sci. 2019;20(2):433. doi: 10.3390/ijms20020433
  73. Baxter NT, Schmidt AW, et al. Dynamics of Human Gut Microbiota and Short-Chain Fatty Acids in Response to Dietary Interventions with Three Fermentable Fibers. mBio. 2019;10(1):e02566-18. doi: 10.1128/mBio.02566-18
  74. Periyanaina Kesika, Bhagavathi Sundaram Sivamaruthi, Chaiyavat Chaiyasut. Do Probiotics Improve the Health Status of Individuals with Diabetes Mellitus? A Review on Outcomes of Clinical Trials. BioMed Res Intern. 2019. doi: 10.1155/2019/1531567
  75. Sabico Sh, Al-Mashharawi A, Al-Daghri NM, et al. Effects of a 6-month multi-strain probiotics supplementation in endotoxemic, inflammatory and cardiometabolic status of T2DM patients: A randomized, double-blind, placebo-controlled trial. Rand Control Trial. 2019;38(Issue 4):1561-9. doi: 10.1016/j.clnu.2018.08.009
  76. Firouzi S, Majid HA, Ismail A, et al. Effect of multi-strain probiotics (multi-strain microbial cell preparation) on glycemic control and other diabetes-related outcomes in people with type 2 diabetes: a randomized controlled trial. Eur J Nutr. 2017;56:1535-50. doi: 10.1007/s00394-016-1199-8
  77. Kobyliaka N, Falalyeyevab T, Mykhalchyshyna G, et al. Effect of alive probiotic on insulin resistance in type 2 diabetes patients: Randomized clinical trial. Diabetes & Metabolic Syndrome: Clin Res Rev. 2018;12(Issue 5):617-24. doi: 10.1016/j.dsx.2018.04.015
  78. Sabico Sh, Al-Mashharawi A, Al-Daghri NM, et al. Effects of a multi-strain probiotic supplement for 12 weeks in circulating endotoxin levels and cardiometabolic profiles of medication naïve T2DM patients: a randomized clinical trial. J Transl Med. 2017;15(249). doi: 10.1186/s12967-017-1354-x
  79. Zhanga Q, Wub Yu, Feia X. Effect of probiotics on glucose metabolism in patients with type 2 diabetes mellitus: A meta-analysis of randomized controlled trials. Medicina. 2016;52(Issue 1):28-34. doi: 10.1016/j.medici.2015.11.008
  80. Kootte RS, Levin E, Salojärvi J. Improvement of Insulin Sensitivity after Lean Donor Feces in Metabolic Syndrome Is Driven by Baseline Intestinal Microbiota Composition. Clin Translat Rep. 2017;26(Issue 4):611-9. doi: 10.1016/j.cmet.2017.09.008
  81. de Groot P, Scheithauer T, Bakker GJ, et al. Donor Metabolic Characteristics Drive Effects of Faecal Microbiota Transplantation on Recipient Insulin Sensitivity, Energy Expenditure and Intestinal Transit Time. Gut. 2020;69(3):502-12. doi: 10.1136/gutjnl-2019-318320

Supplementary files

Supplementary Files
Action
1. JATS XML
2. The main active metabolites of CM and their main functions [11-40].

Download (130KB)

Copyright (c) 2020 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies