Detection of activating mutations in RAS/RAF/MEK/ERK and JAK/STAT signaling pathways

Abstract

Issue. The study of activating mutations (NRASKRASFLT3JAK2CRLF2 genes) of RAS/RAF/MEK/ERK and JAK/STAT signaling pathways in B-cell acute lymphoblastic leukemia (B-ALL) in adult patients which are included in Russian multicenter clinical trials.

Materials and methods. Within the multicenter study there were 119 adult patients included with de novo B-ALL. The study was considered as prospective and retrospective. The group with BCR-ABL1-negative B-ALL consisted of up to 93 patients (45 male and 48 female, at the age of 17 to 59, the median age – 31), they were treated according to the protocols ALL-2009, ALL-2016. The median follow-up lasted for 19 months (1–119). The group with BCR-ABL1-positive B-ALL with up to 26 patients (10 male and 16 female, at the age of 23 to 78, the median age 34 years) was included in the study as well. The treatment was carried out according to the protocols ALL-2009 and ALL-2012 in combination with tyrosine kinase inhibitors. The median follow-up lasted for 23 months (4–120). The molecular analysis of activating mutations in NRASKRAS genes (RAS/RAF/MEK/ERK signaling pathway) and JAK2CRLF2 genes (JAK/STAT signaling cascade) was performed via Sanger sequencing. The internal tandem duplications (ITDs) in FLT3 gene were studied by fragment analysis. The evaluation of CRLF2 expression was fulfilled via flow cytometry.

Results. Activating mutations in NRASKRASFLT3 genes were found in 22 (23.6%) patients with BCR-ABL1-negative B-ALL. In total, 23 mutations were revealed in the NRAS (n=9), KRAS (n=12), and FLT3 (n=2) genes, according to statistics that was significantly more frequent than with BCR-ABL1-positive B-ALL, these genes mutations were not identified in patients (p=0.007).

The frequency of mutations detection in KRAS and NRAS genes in patients with BCR-ABL1-negative B-ALL was comparable as 12.9% (12 of 93) to 9.7% (9 of 93), respectively (p=0.488). One patient was simultaneously revealed 2 mutations in the KRAS gene (in codons 13 and 61). FLT3-ITD mutations were detected in 3.5% (2 of 57) cases of BCR-ABL1-negative B-ALL. In patients with BCR-ABL1-positive B-ALL FLT3-ITD mutations were not assessed. Violations in the JAK/STAT signaling cascade were detected in 4 (4.3%) patients with BCR-ABL1-negative B-ALL. They were represented by the missense mutations of JAK2 gene (n=3) and the overexpression of CRLF2 (n=2); in one patient were detected the overexpression of CRLF2 and a mutation in JAK2 gene simultaneously. No mutations were found in CRLF2 gene. In patients with BCR-ABL1-positive B-ALL no JAK2 mutations were detected. As long as analyzing demographic and clinical laboratory parameters between groups of patients with and without mutations, there were no statistically significant differences obtained. In the analyzed groups of patients, long-term therapy results did not differentiate according to the mutations presence in NRASKRASFLT3JAK2 genes. Also, substantive differences were not shown in the rate of the negative status achievement of the minimum residual disease between patients with and without activating mutations in the control points of the protocol (on the 70th, 133rd and 190th days).

Conclusion. NRASKRASFLT3JAK2 activating mutations do not affect the long-term results of the therapy and the rate of the negative status achievement of the minimum residual disease in patients with BCR-ABL1-negative B-ALL treated by the Russian multicenter clinical trials.

About the authors

K. I. Zarubina

National Research Center for Hematology

Author for correspondence.
Email: ksenijazarubina@mail.com
ORCID iD: 0000-0003-2947-6398

аспирант, врач-гематолог отд-ния интенсивной высокодозной химиотерапии гемобластозов и депрессий кроветворения с круглосуточным стационаром

Russian Federation, Moscow

E. N. Parovichnikova

National Research Center for Hematology

Email: ksenijazarubina@mail.com
ORCID iD: 0000-0001-6177-3566

д.м.н., проф., рук. отд. химиотерапии гемобластозов, депрессий кроветворения и ТКМ

Russian Federation, Moscow

V. L. Surin

National Research Center for Hematology

Email: ksenijazarubina@mail.com
ORCID iD: 0000-0002-1890-4492

исполняющий обязанности рук. лаб. генной инженерии

Russian Federation, Moscow

O. S. Pshenichnikova

National Research Center for Hematology

Email: ksenijazarubina@mail.com
ORCID iD: 0000-0001-5752-8146

к.б.н., ст. науч. сотр. лаб. генной инженерии

Russian Federation, Moscow

O. A. Gavrilina

National Research Center for Hematology

Email: ksenijazarubina@mail.com
ORCID iD: 0000-0002-9969-8482

к.м.н., врач-гематолог, ст. науч. сотр. отд-ния интенсивной высокодозной химиотерапии гемобластозов и депрессий кроветворения с круглосуточным стационаром

Russian Federation, Moscow

G. A. Isinova

National Research Center for Hematology

Email: ksenijazarubina@mail.com
ORCID iD: 0000-0003-2763-5391

к.м.н., врач-гематолог отд-ния интенсивной высокодозной химиотерапии гемобластозов и депрессий кроветворения с круглосуточным стационаром

Russian Federation, Moscow

V. V. Troitskaia

National Research Center for Hematology

Email: ksenijazarubina@mail.com
ORCID iD: 0000-0002-4827-8947

к.м.н., зав. отд-нием интенсивной высокодозной химиотерапии гемобластозов и депрессий кроветворения с круглосуточным стационаром

Russian Federation, Moscow

A. N. Sokolov

National Research Center for Hematology

Email: ksenijazarubina@mail.com
ORCID iD: 0000-0003-1494-7978

ст. науч. сотр. отд-ния интенсивной высокодозной химиотерапии гемобластозов и депрессий кроветворения с круглосуточным стационаром

Russian Federation, Moscow

I. V. Gal’tseva

National Research Center for Hematology

Email: ksenijazarubina@mail.com
ORCID iD: 0000-0002-8490-6066

к.м.н., зав. лаб. иммунофенотипирования клеток крови и костного мозга

Russian Federation, Moscow

N. M. Kapranov

National Research Center for Hematology

Email: ksenijazarubina@mail.com
ORCID iD: 0000-0002-6512-910X

медицинский физик, лаб. иммунофенотипирования клеток крови и костного мозга

Russian Federation, Moscow

Iu. O. Davydova

National Research Center for Hematology

Email: ksenijazarubina@mail.com
ORCID iD: 0000-0001-5932-0285

врач клинической лабораторной диагностики, лаб. иммунофенотипирования клеток крови и костного мозга

Russian Federation, Moscow

T. N. Obukhova

National Research Center for Hematology

Email: ksenijazarubina@mail.com
ORCID iD: 0000-0003-1613-652X

к.м.н., зав. лаб. кариологии

Russian Federation, Moscow

A. B. Sudarikov

National Research Center for Hematology

Email: ksenijazarubina@mail.com
ORCID iD: 0000-0001-9463-9187

д.б.н., зав. научно-клинической лаб. молекулярной гематологии

Russian Federation, Moscow

V. G. Savchenko

National Research Center for Hematology

Email: ksenijazarubina@mail.com
ORCID iD: 0000-0001-8188-5557

акад. РАН, д.м.н., проф., дир.

Russian Federation, Moscow

References

  1. Moorman AV. New and emerging prognostic and predictive genetic biomarkers in B-cell precursor acute lymphoblastic leukemia. Haematologica. 2016;101(4):407-16. doi: 10.3324/haematol.2015.141101
  2. Программное лечение заболеваний системы крови: сборник алгоритмов диагностики и протоколов лечения заболеваний системы крови. Под ред. В.Г. Савченко. М.: Практика, 2012; c. 289-342 [Programmnoe lechenie zabolevanij sistemy krovi: sbornik algoritmov diagnostiki i protokolov lecheniya zabolevanij sistemy krovi. In: VG Savchenko eds. Moscow: Praktika; 2012; p. 289-342 (In Russ.)].
  3. Inaba H, Greaves M, Mullighan CG. Acute lymphoblastic leukaemia. Lancet. 2013;381(9881). doi: 10.1016/S0140-6736(12)62187-4
  4. Harrison CJ. Key pathways as therapeutic targets. Blood. 2011;118(11):2935-6. doi: 10.1182/blood-2011-07-362723
  5. Harrison CJ. Targeting signaling pathways in acute lymphoblastic leukemia: new insights. Hematology Am Soc Hematol Educ Program. 2013;2013:118-25. doi: 10.1182/asheducation-2013.1.118
  6. Herrmann C. Ras-effector interactions: after one decade. Current Opinion in Structural Biology. 2003;13(1):122-9. doi: 10.1016/s0959-440x(02)00007-6
  7. Arcaro A. The Small GTP-binding Protein Rac Promotes the Dissociation of Gelsolin from Actin Filaments in Neutrophils. J Biol Chem. 1998;273(2):805-13. doi: 10.1074/jbc.273.2.805
  8. Schubbert S, Shannon K, Bollag G. Hyperactive Ras in Developmental Disorders and Cancer. Nat Rev Cancer. 2007;7(4):295-308. doi: 10.1038/nrc2109
  9. Ward AF, Braun BS, Shannon KM. Targeting Oncogenic Ras Signaling in Hematologic Malignancies. Blood. 2012;120(17):3397-406. doi: 10.1182/blood-2012-05-378596
  10. Neri A, Knowles DM, Greco A, et al. Analysis of RAS oncogene mutations in human lymphoid malignancies. Proc Natl Acad Sci U S A. 1988;85(23):9268-72. doi: 10.1073/pnas.85.23.9268
  11. Zhang J, Mullighan CG, Harvey RC, et al. Key pathways are frequently mutated in high-risk childhood acute lymphoblastic leukemia: a report from the Children’s Oncology Group. Blood. 2011;118(11):3080-7. doi: 10.1182/blood-2011-03-341412
  12. Paulsson K, Lilljebjörn H, Biloglav A, et al. The genomic landscape of high hyperdiploid childhood acute lymphoblastic leukemia. Nat Genet. 2015;47(6):672-6. doi: 10.1038/ng.3301
  13. Holmfeldt L, Wei L, Diaz-Flores E, et al. The Genomic Landscape of Hypodiploid Acute Lymphoblastic Leukemia. Nat Genet. 2013;45(3):242-52. doi: 10.1038/ng.2532
  14. Andersson AK, Ma J, Wang J, et al. The Landscape of Somatic Mutations in Infant MLL-rearranged Acute Lymphoblastic Leukemias. Nat Genet. 2015;47(4):330-7. doi: 10.1038/ng.3230
  15. Ma X, Edmonson M, Yergeau D, et al. Rise and Fall of Subclones From Diagnosis to Relapse in Pediatric B-acute Lymphoblastic Leukaemia. Nat Commun. 2015;6:6604. doi: 10.1038/ncomms7604
  16. Oshima K, Khiabanian H, Silva-Almeida AC, et al. Mutational Landscape, Clonal Evolution Patterns, and Role of RAS Mutations in Relapsed Acute Lymphoblastic Leukemia. Proc Natl Acad Sci U S A. 2016;113(40):11306-11. doi: 10.1073/pnas.1608420113
  17. Irving J, Matheson E, Minto L, et al. Ras Pathway Mutations Are Prevalent in Relapsed Childhood Acute Lymphoblastic Leukemia and Confer Sensitivity to MEK Inhibition. Blood. 2014;124(23):3420-30. doi: 10.1182/blood-2014-04-531871
  18. Case M, Matheson E, Minto L, et al. Mutation of Genes Affecting the RAS Pathway Is Common in Childhood Acute Lymphoblastic Leukemia. Cancer Res. 2008;68(16):6803-9. doi: 10.1158/0008-5472.CAN-08-0101
  19. Irving J, Matheson E, Minto L, et al. Ras Pathway Mutations Are Prevalent in Relapsed Childhood Acute Lymphoblastic Leukemia and Confer Sensitivity to MEK Inhibition. Blood. 2014;124(23):3420-30. doi: 10.1182/blood-2014-04-531871
  20. Smith CA, Fan G. The Saga of JAK2 Mutations and Translocations in Hematologic Disorders: Pathogenesis, Diagnostic and Therapeutic Prospects, and Revised World Health Organization Diagnostic Criteria for Myeloproliferative Neoplasms. Hum Pathol. 2008;39(6):795-810. doi: 10.1016/j.humpath.2008.02.004
  21. Mullighan CG, Zhang J, Harvey RC, et al. JAK Mutations in High-Risk Childhood Acute Lymphoblastic Leukemia. Proc Natl Acad Sci U S A. 2009;106(23):9414-8. doi: 10.1073/pnas.0811761106
  22. Bercovich D, Ganmore I, Scott LM, et al. Mutations of JAK2 in acute lymphoblastic leukaemias associated with Down’s syndrome. Lancet. 2008;372(9648):1484-92. doi: 10.1016/S0140-6736(08)61341-0
  23. Vainchenker W, Constantinescu SN. JAK/STAT signaling in hematological malignancies. Oncogene. 2013;32(21):2601-13. doi: 10.1038/onc.2012.347
  24. Chen E, Staudt LM, Green AR. Janus kinase deregulation in leukemia and lymphoma. Immunity. 2012;36(4):529-41. doi: 10.1016/j.immuni.2012.03.017
  25. Li F, Guo HY, Wang M, et al. The Effects of R683S (G) Genetic Mutations on the JAK2 Activity, Structure and Stability. Int J Biol Macromol. 2013;60:186-95. doi: 10.1016/j.ijbiomac.2013.05.029
  26. Herold T, Schneider S, Metzeler KH, et al. Adults With Philadelphia Chromosome-Like Acute Lymphoblastic Leukemia Frequently Have IGH-CRLF2 and JAK2 Mutations, Persistence of Minimal Residual Disease and Poor Prognosis. Haematologica. 2017;102(1):130-8. doi: 10.3324/haematol.2015.136366
  27. Harvey RC, Mullighan CG, Chen IM, et al. Rearrangement of CRLF2 Is Associated With Mutation of JAK Kinases, Alteration of IKZF1, Hispanic/Latino Ethnicity, and a Poor Outcome in Pediatric B-progenitor Acute Lymphoblastic Leukemia. Blood. 2010;115(26):5312-21. doi: 10.1182/blood-2009-09-245944
  28. Schmäh J, Fedders B, Panzer-Grümayer R, et al. Molecular Characterization of Acute Lymphoblastic Leukemia With High CRLF2 Gene Expression in Childhood. Pediatr Blood Cancer. 2017;64(10). doi: 10.1002/pbc.26539
  29. Russell LJ, Capasso M, Vater I, et al. Deregulated Expression of Cytokine Receptor Gene, CRLF2, Is Involved in Lymphoid Transformation in B-cell Precursor Acute Lymphoblastic Leukemia. Blood. 2009;114(13):2688-98. doi: 10.1182/blood-2009-03-208397
  30. Choudhary C, Müller-Tidow C, Berdel WE, Serve H. Signal Transduction of Oncogenic FLT3. Int J Hematol. 2005;82(2):93-9. doi: 10.1532/IJH97.05090
  31. Hayakawa F, Towatari M, Kiyoi H, et al. Tandem-duplicated FLT3 Constitutively Activates STAT5 and MAP Kinase and Introduces Autonomous Cell Growth in IL-3-dependent Cell Lines. Oncogene. 2000;19(5):624-31. doi: 10.1038/sj.onc.1203354
  32. Nakao M, Yokota S, Iwai T, et al. Internal tandem duplication of the FLT3 gene found in acute myeloid leukemia. Leukemia. 1996;10(12):1911-8.
  33. Rombouts WJ, Blokland I, Löwenberg B, Ploemacher RE. Biological characteristics and prognosis of adult acute myeloid leukemia with internal tandem duplications in the FLT3 gene. Leukemia. 2000;14(4):675-83. doi: 10.1038/sj.leu.2401731
  34. Armstrong SA, Look AT. Molecular Genetics of Acute Lymphoblastic Leukemia. J Clin Oncol. 2005;23(26):6306-15. doi: 10.1200/JCO.2005.05.047
  35. Пискунова И.С., Обухова Т.Н., Паровичникова Е.Н. и др. Прогностическое значение делеции локуса гена CDKN2a/9p21 у взрослых пациентов с Ph-негативным острым лимфобластным лейкозом на терапии по протоколу ОЛЛ-2009. Онкогематология. 2017;12(3):17-24 [Piskunova IS, Obukhova TN, Parovichnikova EN, et al. CDKN2a/9p21 deletion is not a poor prognostic factor in adult acute lymphoblastic leukemia patients treated according to protocol RALL-2009. Oncogematologiya. 2017;12(3):17-24 (In Russ.)]. doi: 10.17650/1818-8346-2017-12-3-17-24
  36. Пискунова И.С., Обухова Т.Н., Паровичникова Е.Н. и др. Структура и значение цитогенетических перестроек у взрослых больных Ph-негативным острым лимфобластным лейкозом. Терапевтический архив. 2018;90(7):30-7 [Piskunova IS, Obukhova TN, Parovichnikova EN, et al. Structure and importance of cytogenetic rejections in adult patients with Ph-negative acute lymphoblastic leukemia. Therapeutic Archive. 2018;90(7):30-7 (In Russ.)]. doi: 10.26442/terarkh201890730-37
  37. Басхаева Г.А., Паровичникова Е.Н., Бидерман Б.В. и др. Роль мутаций гена IKZF1 при В-клеточном остром лимфобластном лейкозе у взрослых больных, получающих лечение по протоколам российского многоцентрового исследования. Гематология и трансфузиология. 2018;63(1):16-30 [Bashaeva GA, Parovichnikova EN, Biderman BV, et al. The role of IKZF1 gene mutations in-cellular acute lymphoblastic leukemia in adult patients receiving treatment under russian multicenter research protocols. Gematologiya i Transfusiologiya. 2018;63(1):16-30 (In Russ.)]. doi: 10.25837/HAT.2018.80..1..002
  38. Паровичникова Е.Н., Клясова Г.А., Исаев В.Г. и др. Первые итоги терапии Ph-негативных острых лимфобластных лейкозов взрослых по протоколу Научно-исследовательской группы гематологических центров России ОЛЛ-2009. Терапевтический архив. 2011;83(7):7-11. [Parovichnikova EN, Kliasova GA, Isaev VG, et al. Pilot results of therapy of adult Ph-negative acute lymphoblastic leukemia according to the protocol of Research Group of Russian Hematological Centers ALL-2009. Therapeutic Archive. 2011;83(7):7–11 (In Russ.)].
  39. Паровичникова Е.Н., Троицкая В.В., Соколов А.Н. и др. Промежуточные результаты по лечению острых Ph-негативных лимфобластных лейкозов у взрослых больных [итоги Российской исследовательской группы по лечению острых лимфобластных лейкозов (RALL)]. Онкогематология. 2014;9(3):6-15 [Parovichnikova EN, Troitskaya VV, Sokolov AN, et al. Interim results of the Ph-negative acute lymphoblastic leukemia treatment in adult patients [results of Russian research group of ALL treatment (RALL)]. Oncohematology. 2014;9(3):6-15 (In Russ.)]. doi: 10.17650/1818-8346-2014-9-3-6-15
  40. Паровичникова Е.Н., Троицкая В.В., Соколов А.Н. и др. Острые В-лимфобластные лейкозы взрослых: выводы из российского проспективного многоцентрового исследования ОЛЛ-2009. Терапевтический архив. 2017;89(7):10-7 [Parovichnikova EN, Troitskaya VV, Sokolov AN, et al. Adult B-cell acute lymphoblastic leukemias: Conclusions of the russian prospective multicenter study ALL-2009. Ostrye V-limfoblastnye leĭkozy vzroslykh: vyvody iz rossiĭskogo prospektivnogo mnogotsentrovogo issledovaniia OLL-2009. Therapeutic Archive. 2017;89(7):10-7 (In Russ.)]. doi: 10.17116/terarkh2017897 10-17
  41. Паровичникова Е.Н., Савченко В.Г. Российские многоцентровые исследования по лечению острых лейкозов. Терапевтический архив. 2019;91(7):4-13 [Parovichnikova EN, Savchenko VG. Russian multicenter clinical trials in acute leukemias. Therapeutic Archive. 2019;91(7):4-13 (In Russ.)]. doi: 10.26442/00403660.2019.07.000325
  42. Гаврилина О.А., Паровичникова Е.Н., Троицкая В.В. и др. Результаты ретроспективного многоцентрового исследования терапии больных Ph-позитивным острым лимфобластным лейкозом по протоколам российской исследовательской группы. Гематология и трансфузиология. 2017;62(4):172-80 [Gavrilina OA, Parovichnikova EN, Troitskaya VV, et al. The results of the retrospective multicentre study of the therapy of Ph-positive acute lymphoblastic leukemia according to the protocols of the Russian research group. Gematologiya i Transfusiologiya. 2017;62(4):172-80 (In Russ.)]. doi: 10.18821/0234-5730-2017-62-4-172-180
  43. Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391-405. doi: 10.1182/blood-2016-03-643544
  44. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series. 1999;41:95-8.
  45. Pylayeva-Gupta Y, Grabocka E, Bar-Sagi D. RAS oncogenes: weaving a tumorigenic web. Nat Rev Cancer. 2011;11(11):761-74. doi: 10.1038/nrc3106
  46. Macedo MP, Andrade L, Coudry R, et al. Multiple Mutations in the Kras Gene in Colorectal Cancer: Review of the Literature With Two Case Reports. Int J Colorectal Dis. 2011;26(10):1241-8. doi: 10.1007/s00384-011-1238-0
  47. Barbacid M. Ras Genes. Annu Rev Biochem. 1987;56:779-827. doi: 10.1146/annurev.bi.56.070187.004023
  48. Bos JL. The ras gene family and human carcinogenesis. Mutat Res. 1988;195(3):255-71. doi: 10.1016/0165-1110(88)90004-8
  49. Зарубина К.И., Паровичникова Е.Н., Басхаева Г.А. и др. Трудности диагностики и терапии Ph-подобных острых лимфобластных лейкозов: описание 3 клинических случаев. Терапевтический архив. 2018;90(7):110-7 [Zarubina KI, Parovichnikova EN, Baskhaeva GA, et al. Diagnostics and Treatment Challenges of Ph-like Acute Lymphoblastic Leukemia: A Description of 3 Clinical Cases. Therapeutic Archive. 2018;90(7):110-7 (In Russ.)]. doi: 10.26442/terarkh2018907110-117
  50. Kobold S, Kılıç N, Scharlau J, et al. FLT3 – ITD Positive Acute Lymphocytic Leukemia, Does It Impact on Disease´s Course? Turk J Haematol. 2010;27(2):133-4. doi: 10.5152/tjh.2010.18
  51. Harvey RC, Mullighan CG, Wang X, et al. Identification of Novel Cluster Groups in Pediatric High-Risk B-precursor Acute Lymphoblastic Leukemia With Gene Expression Profiling: Correlation With Genome-Wide DNA Copy Number Alterations, Clinical Characteristics, and Outcome. Blood. 2010;116(23):4874-84. doi: 10.1182/blood-2009-08-239681
  52. Den Boer ML, van Slegtenhorst M, De Menezes RX, et al. A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: a genome-wide classification study. Lancet Oncol. 2009;10(2):125-34. doi: 10.1016/S1470-2045(08)70339-5
  53. Roberts KG, Morin RD, Zhang J, et al. Genetic alterations activating kinase and cytokine receptor signaling in high-risk acute lymphoblastic leukemia. Cancer Cell. 2012;22(2):153-66. doi: 10.1016/j.ccr.2012.06.005
  54. Mullighan CG, Collins-Underwood JR, Phillips LA, et al. Rearrangement of CRLF2 in B-progenitor- and Down syndrome-associated acute lymphoblastic leukemia. Nat Genet. 2009;41(11):1243-6. doi: 10.1038/ng.469
  55. Paulsson K, Horvat A, Strömbeck B, et al. Mutations of FLT3, NRAS, KRAS, and PTPN11 Are Frequent and Possibly Mutually Exclusive in High Hyperdiploid Childhood Acute Lymphoblastic Leukemia. Genes Chromosomes Cancer. 2008;47(1):26-33. doi: 10.1002/gcc.20502
  56. Wiemels JL, Zhang Y, Chang J, et al. RAS Mutation Is Associated With Hyperdiploidy and Parental Characteristics in Pediatric Acute Lymphoblastic Leukemia. Leukemia. 2005;19(3):415-9. doi: 10.1038/sj.leu.2403641
  57. Reshmi SC, Harvey RC, Roberts KG, et al. Targetable kinase gene fusions in high-risk B-ALL: a study from the Children’s Oncology Group. Blood. 2017;129(25):3352-61. doi: 10.1182/blood-2016-12-758979
  58. Roberts KG, Reshmi SC, Harvey RC, et al. Genomic and Outcome Analyses of Ph-like ALL in NCI Standard-Risk Patients: A Report From the Children’s Oncology Group. Blood. 2018;132(8):815-24. doi: 10.1182/blood-2018-04-841676
  59. Roberts KG, Gu Z, Payne-Turner D, et al. High Frequency and Poor Outcome of Philadelphia Chromosome-Like Acute Lymphoblastic Leukemia in Adults. J Clin Oncol. 2017;35(4):394-401. doi: 10.1200/JCO.2016.69.0073
  60. Perentesis JP, Bhatia S, Boyle E, et al. RAS oncogene mutations and outcome of therapy for childhood acute lymphoblastic leukemia. Leukemia. 2004;18(4):685-92. doi: 10.1038/sj.leu.2403272
  61. Driessen EM, Van Roon EHJ, Spijkers-Hagelstein JA, et al. Frequencies and prognostic impact of RAS mutations in MLL-rearranged acute lymphoblastic leukemia in infants. Haematologica. 2013;98(6):937-44. doi: 10.3324/haematol.2012.067983
  62. Messina M, Chiaretti S, Wang J, et al. Prognostic and therapeutic role of targetable lesions in B-lineage acute lymphoblastic leukemia without recurrent fusion genes. Oncotarget. 2016;7(12):13886-901. doi: 10.18632/oncotarget.7356
  63. Sokolov N, Parovichnikova EN, Troitskaya VV, et al. Blinatumomab + Tyrosine Kinase Inhibitors with No Chemotherapy in BCR-ABL-Positive or IKZF1-Deleted or FLT3-ITD-Positive Relapsed/Refractory Acute Lymphoblastic Leukemia Patients: High Molecular Remission Rate and Toxicity Profile. Blood. 2017;130(Suppl. 1): 3884. doi: 10.1182/blood. V130.Suppl_1.3884.3884
  64. Зарубина К.И., Усикова Е.В., Абрамова А.В. и др. Достижение полной молекулярной ремиссии у больного острым лимфобластным лейкозом с мутацией FLT3-ITD при терапии сорафенибом и блинатумомабом. Клин. онкогематология. 2017;10(4)540-1 [Zarubina KI, Usikova EV, Abramova AV, et al. Clin Oncohematology. 2017;10(4)540-1 (In Russ.)]. doi: 10.26442/terarkh2018907110-117
  65. Sokolov A, Parovichnikova E, Troitskaya V, et al. Targetable blinatumomab + tyrosine kinase inhibitors treatment in relapsed/refractory acute lymphoblastic leukemia patients: clinical effectiveness and peripheral lymphocytes subpopulations kinetics. Haematologica. 2017;102(s2):354-5.
  66. Sokolov AN, Parovichnikova EN, Troitskaya VV, et al. BCR/ABL, IKZF deletions and FLT3-ITD as the targets for relapsed/refractory B-cell acute lymphoblastic leukemia treatment: Blinatumomab combined with Tyrosine kinase inhibitors and ATRA. Cellular Therapy and Transplantation. 2020;9(1):38-45. doi: 10.18620/ctt-1866-8836-2020-9-1-38-46

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2020 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies