The molecular marker of the preconditioning phenomenon HIF1α is a new pathway for early detection of visceral hypoxic conditions

Cover Page

Cite item

Full Text

Abstract

Improvement and development of technologies for laboratory and instrumental examination of patients in recent years have greatly facilitated the diagnosis of ischemic myocardial damage. However, a decrease in the rating of cardiovascular diseases is not expected in the short term. This is due to an increase in the life expectancy of the population, general aging of the population and improving diagnostic capabilities and the provision of medical care. The time for verification of the diagnosis of ischemic disease, simplified the decision on treatment tactics were significantly reduced by introduction of X-ray contrast visualization examination methods such as angiography, quantitative and qualitative laboratory tests, development of diagnostic criteria based on the results of ultrasound and electrophysiological examination methods. Unfortunately, all these techniques are secondary in nature and are applied, when organ damage is for the most part already irreversible. Full restoration of organs is possible only if the patient is successfully evacuated to the hospital and there are specialists of the appropriate level of experiebce, X-ray surgical equipment with suitable supplies or pharmacological agents, usefull for quickly restoration the patency of the great vessels and normal blood flow. A large number of studies appear on the phenomenon of preconditioning at the present stage of development of fundamental medical science. The purpose of this article is to reveal the possibilities of using molecular markers of the phenomenon of preconditioning in the framework of the early detection of hypoxic conditions, the assessment of their diagnostic use in the clinic and the prevention of hypoxia-associated diseases.

About the authors

D. V. Cherkashin

Kirov Military Medical Academy

Author for correspondence.
Email: cherkashin_dmitr@mail.ru
ORCID iD: 0000-0003-1363-6860

д.м.н., нач. каф. военно-морской терапии

Russian Federation, Saint Petersburg

A. V. Lyubimov

Kirov Military Medical Academy

Email: cherkashin_dmitr@mail.ru
ORCID iD: 0000-0001-9829-4681

к.м.н., ст. ординатор каф. военно-морской терапии

Russian Federation, Saint Petersburg

References

  1. Зарубина И.В., Шабанов П.Д. От идеи С.П. Боткина о «предвоздействии» до феномена прекондиционирования. Перспективы применения феноменов ишемического и фармакологического прекондиционирования. Обзоры по клинической фармакологии и лекарственной терапии. 2016;14(1):4-28 [Zarubina IV, Shabanov PD. From the S.P. Botkin’s idea of «preexposure» to preconditioning phenomenon. Perspectives for use of phenomena of ischemic and pharmacological preconditioning. Reviews on Clinical Pharmacology and Drug Therapy. 2016;14(1): 4-28 (In Russ.)]. doi: 10.17816/RCF1414-28
  2. Иванов А.О., Петров В.А., Безкишкий Э.Н., Ерошенко А.Ю. Cубъективный статус человека при длительной герметизации в гипоксических газовых средах, снижающих пожароопасность герметизируемых обитаемых объектов. Вестник МАНЭБ. 2018;23(3):23-8 [Ivanov AO, Petrov VA, Bezkishkii EN, Eroshenko AYu. The subjective status of a person with long-term sealing in hypoxic atmospheres, which reduces the fire hazard sealed manned objects. Vestnik MANEB. 2018;23(3):23-8 (In Russ.)].
  3. Любимов А.В., Иванов А.О., Безкишкий Э.Н. и др. Оценка влияния длительного непрерывного пребывания в искусственной гипоксической газовоздушной среде при нормальном атмосферном давлении на функциональное состояние сердечно-сосудистой системы человека. Обзоры по клинической фармакологии и лекарственной терапии. 2018;16(3):47-53 [Lyubimov AV, Ivanov AO, Bezkishkij EhN, et al. Assessment of the effect of long-term continuous stay in the artificial hypoxic gas-air environment at normal atmospheric pressure on the functional state of the cardiovascular system. Reviews on Clinical Pharmacology and Drug Therapy. 2018;16(3):47-53 (In Russ.)]. doi: 10.17816/RCF16347-53
  4. Любимов А.В., Черкашин Д.В., Аланичев А.Е. Перспективы кардиопротекции с помощью ишемического прекондиционирования: гипоксия-индуцируемый фактор 1 – возможный молекулярный механизм и мишень для фармакотерапии. Кардиоваскулярная терапия и профилактика. 2017;16(6)139-47 [Lyubimov AV, Cherkashin DV, Alanichev AE. Cardiocytoprotection perspectives with ischemic preconditioning: hypoxia-induced factor 1 – possible molecular mechanism and target for pharmacotherapy. Cardiovascular Therapy and Prevention. 2017;16(6):139-47 (In Russ.)]. doi: 10.15829/1728- 8800-2017-6-139-147
  5. Карпман В.Л., Белоцерковский З.Б., Гудков И.А. Тестирование в спортивной медицине. М.: Физкультура и спорт, 1988 [Karpman VL, Belotserkovskii ZB, Gudkov IA. Testirovanie v sportivnoi meditsine. Moscow: Fizkul’tura i sport, 1988 (In Russ.)].
  6. Радченко А.С. Окись азота и гипоксия при адаптации к мышечной работе (краткий обзор). Обзоры по клинической фармакологии и лекарственной терапии. 2016:14(1):78-88 [Radchenko AS. Nitric oxide and hypoxia at adaptation to muscular work (brief review). Reviews on Clinical Pharmacology and Drug Therapy. 2016;14(1):78-88 (In Russ.)]. doi: 10.17816/RCF14178-88
  7. Сапов И.А., Солодков А.С. Состояние функций организма и работоспособность моряков. Л.: Медицина, 1980 [Sapov IA, Solodkov AS. Sostoyanie funktsii organizma i rabotosposobnost’ moryakov. Leningrad: Meditsina, 1980 (In Russ.)].
  8. Bailey D, Davies B. Physiological implications of altitude training for endurance performance at sea level: a review. Br J Sports Med. 1997;31:183-90. doi: 10.1136/bjsm.31.3.183
  9. Cosby K, et al. Nitrite reduction to nitric oxide by deoxyhemoglobin vasodilates the human circulation. Nat Med. 2003;9:1498-505. doi: 10.1038/nm954
  10. Ellsworth M, et al. The erythrocyte as a regulator of vascular tone. Am J Physiol. 1995;269:2155-61. doi: 10.1152/ajpheart.1995.269.6.h2155
  11. Gladwin M, et al. Nitrite as a vascular endocrine nitric oxide reservoir that contributes to hypoxic signaling, cytoprotection, and vasodilation. Am J Physiol Heart Circ Physiol. 2006;291(5):Р2026-2035. doi: 10.1152/ajpheart.00407.2006
  12. González-Alonso J. ATP as a mediator of erythrocyte-dependent regulation of skeletal muscle blood flow and oxygen delivery in humans. J Physiol. 2012;590:5001-13. doi: 10.1113/jphysiol.2012.235002
  13. Gonzalez-Alonso J, et al. Erythrocytes and the regulation of human skeletal muscle blood flow and oxygen delivery: role of erythrocyte count and oxygenation state of haemoglobin. J Physiol. 2006;572:295-305. doi: 10.1113/jphysiol.2005.101121
  14. González-Alonso J, Olsen D, Saltin B. Erythrocyte and the regulation of human skeletal muscle blood flow and oxygen delivery: role of circulating ATP. Circ Res. 2002;91:1046-55. doi: 10.1161/01.RES.0000044939.73286.E2
  15. Gore C, Clark S, Saunders P. Nonhematological mechanisms of improved sea-level performance after hypoxic exposure. Med Sci Sports Exerc. 2007;39(9):1600-9. doi: 10.1249/mss.0b013e3180de49d3
  16. Gore C, et al. Increased serum erythropoietin but not red cell production after 4 wk of intermittent hypobaric hypoxia (4000–5500 m). J Appl Physiol. 2006;101:1386-93. doi: 10.1152/japplphysiol.00342.2006
  17. Gore C, et al. Live high: train low increases muscle buffer capacity and submaximal cycling efficiency. Acta Physiol Scand. 2001;173(3):275-86. doi: 10.1046/j.1365-201x.2001.00906.x
  18. Jensen F. The dual roles of red blood cells in tissue oxygen delivery: oxygen carriers and regulators of local blood flow. J Exp Biol. 2009;212:3387-93. doi: 10.1242/jeb.023697
  19. Jia L, Bonaventura C, Bonaventura J, Stamler JS. S-nitrosohaemoglobin: a dynamic activity of blood involved in vascular control. Nature. 1996;380:221-6. doi: 10.1038/380221a0
  20. Levine B. Intermittent hypoxic training: fact and fancy. High Alt Med Biol. 2002;3:177-93. doi: 10.1089/15270290260131911
  21. Levine B, Stray-Gundersen J. «Living high-training low»: effect of moderate-altitude acclimatization with low-altitude training on performance. J Appl Physiol. 1997;83:102-12. doi: 10.1152/jappl.1997.83.1.102
  22. Lin P, Kreutzer U, Thomas J. Myoglobin translational diffusion in rat myocardium and its Implication on intracellular oxygen transport. J Physiol. 2007;578:595-603. doi: 10.1113/jphysiol.2006.116061
  23. Rezkalla S, Kloner R. Preconditioning in humans. Heart Fail Rev. 2007;12:201-6. doi: 10.1007/s10741-007-9037-y
  24. Rusko H, Tikkanen H, Peltonen J. Altitude and endurance training. J Sports Sci. 2004;22:928-44. doi: 10.1080/02640410400005933
  25. Saunders P, Telford R, Pyne D, et al. Improved running economy in elite runners after 20 days of simulated moderate-altitude exposure. J Appl Physiol. 2004;96:931-7. doi: 10.1152/japplphysiol.00725.2003
  26. Schmitt L, et al. Influence of «living high-training low» on aerobic performance and economy of work in elite athletes. Eur J Appl Physiol. 2006;97:627-36. doi: 10.1007/s00421-006-0228-3
  27. Wang G, Semenza G. Purification and characterization of hypoxia-inducible factor 1. J Biol Chem. 1995;270:1230-7. doi: 10.1074/jbc.270.3.1230
  28. Wang G, Jiang B, Rue E, Semenza G. Hypoxia-inducible factor 1 is a basic-helix-loop-helixPAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA. 1995;92:5510-4. doi: 10.1073/pnas.92.12.5510
  29. Wilber R, Stray-Gundersen J, Levine B. Effect of hypoxic «dose» on hysiological response and sea-level performance. Med Sci Sports Exerc. 2007;39:1590-9. doi: 10.1249/mss.0b013e3180de49bd
  30. Wilber R. Application of altitude/hypoxic training by elite athletes. Med Sci Sports Exerc. 2007;39:1610-24. doi: 10.1249/mss. 0b013e3180de49e6

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Change in HIF1α protein concentration before and after exposure to a stress factor.

Download (19KB)

Copyright (c) 2020 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies