Perspectives of cell therapy for myocardial infarction and heart failure based on cardiosphere cells

Cover Page

Cite item

Full Text

Abstract

Cardiovascular diseases are the leading cause of morbidity and mortality worldwide. In recent years, researchers are attracted to the use of cell therapy based on stem cell and progenitor cells, which has been a promising strategy for cardiac repair after injury. However, conducted research using intracoronary or intramyocardial transplantation of various types of stem/progenitor cells as a cell suspension showed modest efficiency. This is due to the low degree of integration and cell survival after transplantation. To overcome these limitations, the concept of the use of multicellular spheroids modeling the natural microenvironment of cells has been proposed, which allows maintaining their viability and therapeutic properties. It is of great interest to use so-called cardial spheroids (cardiospheres) – spontaneously forming three-dimensional structures under low-adhesive conditions, consisting of a heterogeneous population of myocardial progenitor cells and extracellular matrix proteins. This review presents data on methods for creating cardiospheres, directed regulation of their properties and reparative potential, as well as the results of preclinical and clinical studies on their use for the treatment of heart diseases.

About the authors

K. V. Dergilev

National Medical Research Center for Cardiology

Author for correspondence.
Email: doctorkote@gmail.com
ORCID iD: 0000-0003-2712-4997

вед. науч. сотр. лаб. ангиогенеза Института экспериментальной кардиологии

Russian Federation, Moscow

Iu. D. Vasilets

National Medical Research Center for Cardiology

Email: doctorkote@gmail.com
ORCID iD: 0000-0002-6367-3785

лаборант-исследователь лаб. ангиогенеза Института экспериментальной кардиологии

Russian Federation, Moscow

Z. I. Tsokolaeva

National Medical Research Center for Cardiology; Negovsky Scientific Research Institute of General Reanimatology of the Federal Research and Clinical Center of Intensive Care Medicine
and Rehabilitology

Email: doctorkote@gmail.com
ORCID iD: 0000-0003-2441-6062

ст. науч. сотр. лаб. ангиогенеза Института экспериментальной кардиологии

Russian Federation, Moscow

E. S. Zubkova

National Medical Research Center for Cardiology

Email: doctorkote@gmail.com
ORCID iD: 0000-0002-0512-3670

мл. науч. сотр. лаб. ангиогенеза Института экспериментальной кардиологии

Russian Federation, Moscow

E. V. Parfenova

National Medical Research Center for Cardiology; Lomonosov Moscow State University

Email: doctorkote@gmail.com
ORCID iD: 0000-0002-0969-5780

рук. лаб. ангиогенеза, дир. Института экспериментальной кардиологии; лаб. постгеномных технологий в медицине фак-та фундаментальной медицины 

Russian Federation, Moscow

References

  1. Ashur C, Frishman WH. Cardiosphere-Derived Cells and Ischemic Heart Failure. Cardiol Rev. 2018;26(1):8-21. doi: 10.1097/CRD.0000000000000173
  2. Barile L, Gherghiceanu M, Popescu LM, et al. Ultrastructural evidence of exosome secretion by progenitor cells in adult mouse myocardium and adult human cardiospheres. J Biomed Biotechnol. 2012;2012:354605. doi: 10.1155/2012/354605
  3. Bernardo BC, Ooi JY, Lin RC, McMullen JR. miRNA therapeutics: a new class of drugs with potential therapeutic applications in the heart. Future Med Chem. 2015;7(13):1771-92. doi: 10.4155/fmc.15.107
  4. Khodayari S, Khodayari H, Amiri AZ, et al. Inflammatory Microenvironment of Acute Myocardial Infarction Prevents Regeneration of Heart with Stem Cells Therapy. Cell Physiol Biochem. 2019;53(5):887-909. doi: 10.33594/000000180
  5. Menasché P. Cell therapy trials for heart regeneration – lessons learned and future directions. Nat Rev Cardiol. 2018;15(11):659-71. doi: 10.1038/s41569-018-0013-0
  6. Zuppinger C. 3D culture for cardiac cells. Biochim Biophys Acta. 2016;1863(7 Pt B):1873-81. doi: 10.1016/j.bbamcr.2015.11.036
  7. Afzal MR, Samanta A, Shah ZI, et al. Adult Bone Marrow Cell Therapy for Ischemic Heart Disease: Evidence and Insights From Randomized Controlled Trials. Circ Res. 2015;117(6):558-75. doi: 10.1161/ CIRCRESAHA.114.304792
  8. Gil-Perotín S, Duran-Moreno M, Cebrián-Silla A, et al. Adult neural stem cells from the subventricular zone: a review of the neurosphere assay. Anat Rec (Hoboken). 2013;296(9):1435-52. doi: 10.1002/ ar.22746
  9. Griffith LG, Swartz MA. Capturing complex 3D tissue physiology in vitro. Nat Rev Mol Cell Biol. 2006;7(3):211-24. doi: 10.1038/nrm1858
  10. Pampaloni F, Reynaud EG, Stelzer EH. The third dimension bridges the gap between cell culture and live tissue. Nat Rev Mol Cell Biol. 2007;8(10):839-45. doi: 10.1038/nrm2236
  11. Pedersen JA, Swartz MA. Mechanobiology in the third dimension. Ann Biomed Eng. 2005;33(11):1469-90. doi: 10.1007/s10439-005-8159-4
  12. Gallet R, Tseliou E, Dawkins J, et al. Intracoronary delivery of self-assembling heart-derived microtissues (cardiospheres) for prevention of adverse remodeling in a pig model of convalescent myocardial infarction. Circ Cardiovasc Interv. 2015;8(5):e002391. doi: 10.1161/ CIRCINTERVENTIONS.115.002391
  13. Afzal J, Chan A, Karakas MF, et al. Cardiosphere-Derived Cells Demonstrate Metabolic Flexibility That Is Influenced by Adhesion Status. JACC Basic Transl Sci. 2017;2(5):543-60. doi: 10.1016/j.jacbts. 2017.03.016
  14. Aghila Rani KG, Kartha CC. Effects of epidermal growth factor on proliferation and migration of cardiosphere-derived cells expanded from adult human heart. Growth Factors. 2010;28(3):157-65. doi: 10.3109/08977190903512628
  15. Chimenti I, Gaetani R, Forte E, et al. Serum and supplement optimization for EU GMP-compliance in cardiospheres cell culture. J Cell Mol Med. 2014;18(4):624-34. doi: 10.1111/jcmm.12210
  16. Messina E, De Angelis L, Frati G, et al. Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ Res. 2004;95(9):911-21. doi: 10.1161/01.RES.0000147315.71699.51
  17. Fabrizi C, Angelini F, Chimenti I, et al. Thrombin and thrombin-derived peptides promote proliferation of cardiac progenitor cells in the form of cardiospheres without affecting their differentiation potential. J Biol Regul Homeost Agents. 2011;25(2 Suppl.):43-51.
  18. Chimenti I, Massai D, Morbiducci U, et al. Stem Cell Spheroids and Ex Vivo Niche Modeling: Rationalization and Scaling-Up. J Cardiovasc Transl Res. 2017;10(2):150-66. doi: 10.1007/s12265-017-9741-5
  19. Jochems CE, van der Valk JB, Stafleu FR, Baumans V. The use of fetal bovine serum: ethical or scientific problem? Altern Lab Anim. 2002;30(2):219-27. doi: 10.1177/026119290203000208
  20. Chen T, You Y, Jiang H, Wang ZZ. Epithelial-mesenchymal transition (EMT): A biological process in the development, stem cell differentiation, and tumorigenesis. J Cell Physiol. 2017;232(12):3261-72. doi: 10.1002/jcp.25797
  21. Forte E, Chimenti I, Rosa P, et al. EMT/MET at the Crossroad of Stemness, Regeneration and Oncogenesis: The Ying-Yang Equilibrium Recapitulated in Cell Spheroids. Cancers (Basel). 2017;9(8):98. doi: 10.3390/cancers9080098
  22. Forte E, Miraldi F, Chimenti I, et al. TGFβ-dependent epithelial-to-mesenchymal transition is required to generate cardiospheres from human adult heart biopsies. Stem Cells Dev. 2012;21(17):3081-90. doi: 10.1089/scd.2012.0277
  23. Secco I, Barile L, Torrini C, et al. Notch pathway activation enhances cardiosphere in vitro expansion. J Cell Mol Med. 2018;22(11):5583-95. doi: 10.1111/jcmm.13832
  24. Zakharova L, Nural-Guvener H, Gaballa MA. Cardiac explant-derived cells are regulated by Notch-modulated mesenchymal transition. PLoS One. 2012;7(5):e37800. doi: 10.1371/journal.pone.0037800
  25. Nemir M, Pedrazzini T. Functional role of Notch signaling in the developing and postnatal heart. J Mol Cell Cardiol. 2008;45(4):495-504. doi: 10.1016/j.yjmcc.2008.02.273
  26. Grieskamp T, Rudat C, Lüdtke TH, et al. Notch signaling regulates smooth muscle differentiation of epicardium-derived cells. Circ Res. 2011;108(7):813-23. doi: 10.1161/CIRCRESAHA.110.228809
  27. Urbanek K, Torella D, Sheikh F, et al. Myocardial regeneration by activation of multipotent cardiac stem cells in ischemic heart failure. Proc Natl Acad Sci U S A. 2005;102(24):8692-7. doi: 10.1073/pnas.0500169102
  28. Chimenti I, Pagano F, Cavarretta E, et al. Β-blockers treatment of cardiac surgery patients enhances isolation and improves phenotype of cardiosphere-derived cells. Sci Rep. 2016;6:36774. doi: 10.1038/srep36774
  29. Amirrasouli MM, Shamsara M. Comparing the in vivo and in vitro effects of hypoxia (3% O2) on directly derived cells from murine cardiac explants versus murine cardiosphere derived cells. J Stem Cells Regen Med. 2017;13(2):35-44.
  30. Gonzalez DM, Medici D. Signaling mechanisms of the epithelial-mesenchymal transition. Sci Signal. 2014;7(344):re8. doi: 10.1126/ scisignal.2005189
  31. Tan SC, Gomes RS, Yeoh KK, et al. Preconditioning of Cardiosphere-Derived Cells With Hypoxia or Prolyl-4-Hydroxylase Inhibitors Increases Stemness and Decreases Reliance on Oxidative Metabolism. Cell Transplant. 2016;25(1):35-53. doi: 10.3727/096368915X687697
  32. Hosoyama T, Samura M, Kudo T, et al. Cardiosphere-derived cell sheet primed with hypoxia improves left ventricular function of chronically infarcted heart. Am J Transl Res. 2015;7(12):2738-51.
  33. Chimenti I, Smith RR, Li TS, et al. Relative roles of direct regeneration versus paracrine effects of human cardiosphere-derived cells transplanted into infarcted mice. Circ Res. 2010;106(5):971-80. doi: 10.1161/CIRCRESAHA.109.210682
  34. Li TS, Cheng K, Lee ST, et al. Cardiospheres recapitulate a niche-like microenvironment rich in stemness and cell-matrix interactions, rationalizing their enhanced functional potency for myocardial repair. Stem Cells. 2010;28(11):2088-98. doi: 10.1002/stem.532
  35. Cho HJ, Lee HJ, Youn SW, et al. Secondary sphere formation enhances the functionality of cardiac progenitor cells. Mol Ther. 2012;20(9):1750-66. doi: 10.1038/mt.2012.109
  36. Redgrave RE, Tual-Chalot S, Davison BJ, et al. Cardiosphere-Derived Cells Require Endoglin for Paracrine-Mediated Angiogenesis. Stem Cell Reports. 2017;8(5):1287-98. doi: 10.1016/j.stemcr.2017.04.015
  37. Lee HJ, Cho HJ, Kwon YW, et al. Phenotypic modulation of human cardiospheres between stemness and paracrine activity, and implications for combined transplantation in cardiovascular regeneration. Biomaterials. 2013;34(38):9819-29. doi: 10.1016/j.biomaterials.2013.09.013
  38. Lee ST, White AJ, Matsushita S, et al. Intramyocardial injection of autologous cardiospheres or cardiosphere-derived cells preserves function and minimizes adverse ventricular remodeling in pigs with heart failure post-myocardial infarction. J Am Coll Cardiol. 2011;57(4):455-65. doi: 10.1016/j.jacc.2010.07.049
  39. Tseliou E, Kanazawa H, Dawkins J, et al. Widespread Myocardial Delivery of Heart-Derived Stem Cells by Nonocclusive Triple-Vessel Intracoronary Infusion in Porcine Ischemic Cardiomyopathy: Superior Attenuation of Adverse Remodeling Documented by Magnetic Resonance Imaging and Histology. PLoS One. 2016;11(1):e0144523. doi: 10.1371/journal.pone.0144523
  40. Johnston PV, Sasano T, Mills K, et al. Engraftment, differentiation, and functional benefits of autologous cardiosphere-derived cells in porcine ischemic cardiomyopathy. Circulation. 2009;120(12):1075-83. doi: 10.1161/CIRCULATIONAHA.108.816058
  41. Cheng K, Blusztajn A, Shen D, et al. Functional performance of human cardiosphere-derived cells delivered in an in situ polymerizable hyaluronan-gelatin hydrogel. Biomaterials. 2012;33(21):5317-24. doi: 10.1016/j.biomaterials.2012.04.006
  42. Tanaka Y, Hosoyama T, Mikamo A, et al. Hypoxic preconditioning of human cardiosphere-derived cell sheets enhances cellular functions via activation of the PI3K/Akt/mTOR/HIF-1α pathway. Am J Transl Res. 2017;9(2):664-73.
  43. Blázquez R, Sánchez-Margallo FM, Crisóstomo V, et al. Intrapericardial Delivery of Cardiosphere-Derived Cells: An Immunological Study in a Clinically Relevant Large Animal Model. PLoS One. 2016;11(2):e0149001. doi: 10.1371/journal.pone.0149001
  44. Gallet R, Dawkins J, Valle J, et al. Exosomes secreted by cardiosphere-derived cells reduce scarring, attenuate adverse remodelling, and improve function in acute and chronic porcine myocardial infarction. Eur Heart J. 2017;38(3):201-11. doi: 10.1093/eurheartj/ehw240
  45. Rogers RG, Fournier M, Sanchez L, et al. Disease-modifying bioactivity of intravenous cardiosphere-derived cells and exosomes in mdx mice. JCI Insight. 2019;4(7):e125754. doi: 10.1172/jci.insight.125754
  46. Lapchak PA, Boitano PD, de Couto G, Marbán E. Intravenous xenogeneic human cardiosphere-derived cell extracellular vesicles (exosomes) improves behavioral function in small-clot embolized rabbits. Experimental Neurology. 2018;307:109-17. doi: 10.1016/j.expneurol. 2018.06.007
  47. Tseliou E, Fouad J, Reich H, et al. Fibroblasts Rendered Antifibrotic, Antiapoptotic, and Angiogenic by Priming With Cardiosphere-Derived Extracellular Membrane Vesicles. J Am Coll Cardiol. 2015;66(6):599-611. doi: 10.1016/j.jacc.2015.05.068
  48. Grigorian-Shamagian L, Liu W, Fereydooni S, et al. Cardiac and systemic rejuvenation after cardiosphere-derived cell therapy in senescent rats. Eur Heart J. 2017;38(39):2957-67. doi: 10.1093/eurheartj/ehx454
  49. Cambier L, Giani JF, Liu W, et al. Angiotensin II-Induced End-Organ Damage in Mice Is Attenuated by Human Exosomes and by an Exosomal Y RNA Fragment. Hypertension. 2018;72(2):370-80. doi: 10.1161/HYPERTENSIONAHA.118.11239
  50. Ibrahim AG, Cheng K, Marbán E. Exosomes as critical agets of cardiac regeneration triggered by cell therapy. Stem Cell Reports. 2014;2(5):606-19. doi: 10.1016/j.stemcr.2014.04.006
  51. Malliaras K, Li TS, Luthringer D, et al. Safety and efficacy of allogeneic cell therapy in infarcted rats transplanted with mismatched cardiosphere-derived cells. Circulation. 2012;125(1):10-2. doi: 10.1161/ CIRCULATIONAHA.111.042598
  52. Hodgkiss-Geere HM, Argyle DJ, Corcoran BM, et al. Characterisation and cardiac directed differentiation of canine adult cardiac stem cells. Vet J. 2012;191(2):176-82. doi: 10.1016/j.tvjl.2010.12.033
  53. Cohn JN, Ferrari R, Sharpe N. Cardiac remodeling – concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. Behalf of an International Forum on Cardiac Remodeling. J Am Coll Cardiol. 2000;35(3):569-82. doi: 10.1016/s0735-1097(99)00630-0
  54. Wu QQ, Xiao Y, Yuan Y, et al. Mechanisms contributing to cardiac remodelling. Clinical Science. 2017;131(18):2319-45. doi: 10.1042/ cs20171167
  55. Zhang J, Wu Z, Fan Z, et al. Pericardial application as a new route for implanting stem-cell cardiospheres to treat myocardial infarction. J Physiol. 2018;596(11):2037-54. doi: 10.1113/JP275548
  56. Yee K, Malliaras K, Kanazawa H, et al. Allogeneic cardiospheres delivered via percutaneous transendocardial injection increase viable myocardium, decrease scar size, and attenuate cardiac dilatation in porcine ischemic cardiomyopathy. PLoS One. 2014;9(12):e113805. doi: 10.1371/journal.pone.0113805
  57. Tseliou E, Reich H, de Couto G, et al. Cardiospheres reverse adverse remodeling in chronic rat myocardial infarction: roles of soluble endoglin and Tgf-β signaling. Basic Res Cardiol. 2014;109(6):443. doi: 10.1007/s00395-014-0443-8
  58. Tseliou E, de Couto G, Terrovitis J, et al. Angiogenesis, cardiomyocyte proliferation and anti-fibrotic effects underlie structural preservation post-infarction by intramyocardially-injected cardiospheres. PLoS One. 2014;9(2):e88590. doi: 10.1371/journal.pone.0088590
  59. Davis DR, Zhang Y, Smith RR, et al. Validation of the cardiosphere method to culture cardiac progenitor cells from myocardial tissue. PLoS One. 2009;4(9):e7195. doi: 10.1371/journal.pone.0007195
  60. Kanazawa H, Tseliou E, Dawkins JF, et al. Durable Benefits of Cellular Postconditioning: Long-Term Effects of Allogeneic Cardiosphere-Derived Cells Infused After Reperfusion in Pigs with Acute Myocardial Infarction. J Am Heart Assoc. 2016;5(2):e002796. doi: 10.1161/ JAHA.115.002796
  61. Tseliou E, Pollan S, Malliaras K, et al. Allogeneic cardiospheres safely boost cardiac function and attenuate adverse remodeling after myocardial infarction in immunologically mismatched rat strains. J Am Coll Cardiol. 2013;61(10):1108-19. doi: 10.1016/j.jacc.2012.10.052
  62. Wood KJ, Issa F, Hester J. Understanding Stem Cell Immunogenicity in Therapeutic Applications. Trends Immunol. 2016;37(1):5-16. doi: 10.1016/j.it.2015.11.005
  63. Lauden L, Boukouaci W, Borlado LR, et al. Allogenicity of human cardiac stem/progenitor cells orchestrated by programmed death ligand 1. Circ Res. 2013;112(3):451-64. doi: 10.1161/CIRCRESAHA.112.276501
  64. Gallet R, de Couto G, Simsolo E, et al. Cardiosphere-derived cells reverse heart failure with preserved ejection fraction (HFpEF) in rats by decreasing fibrosis and inflammation. JACC Basic Transl Sci. 2016;1(1-2):14-28. doi: 10.1016/j.jacbts.2016.01.003
  65. Dutton LC, Dudhia J, Catchpole B, et al. Cardiosphere-derived cells suppress allogeneic lymphocytes by production of PGE2 acting via the EP4 receptor. Sci Rep. 2018;8(1):13351. doi: 10.1038/s41598-018-31569-1
  66. de Couto G, Liu W, Tseliou E, et al. Macrophages mediate cardioprotective cellular postconditioning in acute myocardial infarction. J Clin Invest. 2015;125(8):3147-62. doi: 10.1172/JCI81321
  67. Hasan AS, Luo L, Yan C, et al. Cardiosphere-Derived Cells Facilitate Heart Repair by Modulating M1/M2 Macrophage Polarization and Neutrophil Recruitment. PLoS One. 2016;11(10):e0165255. doi: 10.1371/journal.pone.0165255
  68. Nana-Leventaki E, Nana M, Poulianitis N, et al. Cardiosphere-Derived Cells Attenuate Inflammation, Preserve Systolic Function, and Prevent Adverse Remodeling in Rat Hearts With Experimental Autoimmune Myocarditis. J Cardiovasc Pharmacol Ther. 2019;24(1):70-7. doi: 10.1177/1074248418784287
  69. Malliaras K, Terrovitis J. Cardiomyocyte proliferation vs progenitor cells in myocardial regeneration: The debate continues. Glob Cardiol Sci Pract. 2013;2013(3):303-15. doi: 10.5339/gcsp.2013.37
  70. Malliaras K, Makkar RR, Smith RR, et al. Intracoronary cardiosphere-derived cells after myocardial infarction: evidence of therapeutic regeneration in the final 1-year results of the CADUCEUS trial (CArdiosphere-Derived aUtologous stem CElls to reverse ventricUlar dySfunction). J Am Coll Cardiol. 2014;63(2):110-22. doi: 10.1016/j.jacc.2013.08.724
  71. Maguire G, Friedman P. The Systems Biology of Stem Cell Released Molecules – Based Therapeutics. ISRN Stem Cells. 2013;1-12. doi: 10.1155/2013/784541
  72. Marunouchi T, Yano E, Tanonaka K. Effects of cardiosphere-derived cell transplantation on cardiac mitochondrial oxygen consumption after myocardial infarction in rats. Biomed Pharmacother. 2018;108:883-92. doi: 10.1016/j.biopha.2018.09.117
  73. Tang XL, Rokosh G, Sanganalmath SK, et al. Intracoronary administration of cardiac progenitor cells alleviates left ventricular dysfunction in rats with a 30-day-old infarction. Circulation. 2010;121(2):293-305. doi: 10.1161/CIRCULATIONAHA.109.871905
  74. Xie Y, Ibrahim A, Cheng K, et al. Importance of cell-cell contact in the therapeutic benefits of cardiosphere-derived cells. Stem Cells. 2014;32(9):2397-406. doi: 10.1002/stem.1736
  75. Barile L, Lionetti V, Cervio E, et al. Extracellular vesicles from human cardiac progenitor cells inhibit cardiomyocyte apoptosis and improve cardiac function after myocardial infarction. Cardiovasc Res. 2014;103(4):530-41. doi: 10.1093/cvr/cvu167
  76. Jafarzadeh M, Mohammad Soltani B, Ekhteraei Tousi S, Behmanesh M. Hsa-miR-497 as a new regulator in TGFβ signaling pathway and cardiac differentiation process. Gene. 2018;675:150-6. doi: 10.1016/ j.gene.2018.06.098
  77. Makkar RR, Smith RR, Cheng K, et al. Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet. 2012;379(9819):895-904. doi: 10.1016/S0140-6736(12)60195-0
  78. Tarui S, Ishigami S, Ousaka D, et al. Transcoronary infusion of cardiac progenitor cells in hypoplastic left heart syndrome: Three-year follow-up of the Transcoronary Infusion of Cardiac Progenitor Cells in Patients With Single-Ventricle Physiology (TICAP) trial. J Thorac Cardiovasc Surg. 2015;150(5):1198-207,1208.e1-2. doi: 10.1016/ j.jtcvs.2015.06.076
  79. Chakravarty T, Makkar RR, Ascheim DD, et al. ALLogeneic Heart STem Cells to Achieve Myocardial Regeneration (ALLSTAR) Trial: Rationale and Design. Cell Transplant. 2017;26(2):205-14. doi: 10.3727/096368916X692933
  80. Chakravarty T, Makkar R, Henry T, et al. Multivessel intracoronary infusion of allogeneic derived cardiosphere cells in cardiomyopathy: long term outcomes of the dilated cardiomyopathy intervention with allogeneic myocardially regenerative cells (DYNAMIC STUDY). J Am Coll Cardio. 2016;68(18):B332. doi: 10.1016/j.jacc.2016.09.848
  81. Taylor M, Jefferies J, Byrne B, et al. Cardiac and skeletal muscle effects in the randomized HOPE-Duchenne trial. Neurology. 2019;92(8):e866-e878. doi: 10.1212/WNL.0000000000006950. PMID: 30674601.
  82. Dorobantu M, Popa-Fotea NM, Popa M, et al. Pursuing meaningful end-points for stem cell therapy assessment in ischemic cardiac disease. World J Stem Cells. 2017;9(12):203-18. doi: 10.4252/wjsc.v9.i12.203
  83. Fischer B, Meier A, Dehne A, et al. A complete workflow for the differentiation and the dissociation of hiPSC-derived cardiospheres. Stem Cell Res. 2018;32:65-72. doi: 10.1016/j.scr.2018.08.015

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Obtaining and characterizing cardiospheres from mouse myocardial cells.

Download (48KB)
3. Fig. 2. A schematic representation of the basic mechanisms of action of the cardiospheres (explanations in the text).

Download (54KB)

Copyright (c) 2020 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies