Respiratory muscles dysfunction and respiratory diseases


Cite item

Full Text

Abstract

This review presents an analysis of the literature on the topic of respiratory muscle (RM) dysfunction in various forms of respiratory pathology: chronic obstructive pulmonary disease (COPD), asthma, community-acquired pneumonia, idiopathic pulmonary fibrosis (IPF), sarcoidosis and interstitial lung diseases (ILD), associated with systemic connective tissue diseases (polymyositis, dermatomyositis and systemic lupus erythematosus - SLE). Various clinical and pathophysiological aspects of RM dysfunction and general patterns of its pathogenesis were examined. It was proved that the role of RM in the development of respiratory failure depends on the form and stage of the pulmonary pathology and the severity of systemic manifestations of these diseases: excessive proteolysis, oxidative stress, hypoxia, chronic systemic inflammation. These factors modify the morphofunctional status of RM, worsens their contractile function, which is contributed to the development of respiratory failure. In some cases, the primary weakness of RM precedes the clinical manifestation of pulmonary pathology, which is distinctive for some variants of myositis-associated ILD and SLE. Endogenous intoxication syndrome plays a significant role in the development of RM dysfunction during community-acquired pneumonia. It is noted that sarcoid pulmonary ventilation disorders associate with the RM weakness, but not with the degree of lung damage. In most cases, secondary RM dysfunction predominates that contributes to respiratory failure progression, which is especially noticeable in case of COPD, asthma and IPF.

About the authors

B I Geltser

Far Eastern Federal University of the Ministry of Education and Science; Pacific State Medical University of the Ministry of Health of the Russian Federation

д.м.н., проф., член-корр. РАН, директор департамента фундаментальной и клинической медицины школы биомедицины Дальневосточного федерального университета; cоветник ректора по науке и инновациям ФГБОУ ВО ТГМУ Минздрава России; ORCID: 0000-0002-9250-557X Vladivostok, Russia

I G Kurpatov

Pacific State Medical University of the Ministry of Health of the Russian Federation

Email: kurpatov-i@mail.ru
аспирант каф. нормальной и патологической физиологии ФГБОУ ВО ТГМУ Минздрава России; тел.: 8(423)245-17-83; e-mail:kurpatov-i@mail.ru; ORCID: 0000-0002-4031-2979 Vladivostok, Russia

A A Dej

Far Eastern Federal University of the Ministry of Education and Science

аспирант департамента фундаментальной и клинической медицины школы биомедицины Дальневосточного федерального университета; ORCID: 0000-0003-2626-413Х Vladivostok, Russia

A G Kozhanov

Far Eastern Federal University of the Ministry of Education and Science

аспирант департамента фундаментальной и клинической медицины школы биомедицины Дальневосточного федерального университета; ORCID: 0000-0003-4667-5444 Vladivostok, Russia

References

  1. Александрова Н.П., Бреслав И.С. Дыхательные мышцы человека: три уровня управления. Физиология человека. 2009;35(2):103-11. Доступно по: https://elibrary.ru/download/elibrary_13066881_128739 71.pdf
  2. Александрова Н.П. Цитокины и резистивное дыхание. Физиология человека. 2012;38(2):119-29. http://dx.doi.org/10.1134/s0362119712020028
  3. Чучалин А.Г., Айсанов З.Р. Нарушение функции дыхательных мышц при хронических обструктивных заболеваниях легких. Терапевтический архив. 1988;60(7):126-31.
  4. Lumb A.B. Nunn's Applied Respiratory Physiology eBook. Elsevier Health Sciences. 2016.
  5. O’Donnell D.E, Laveneziana P, Webb K, Neder J.A. Chronic obstructive pulmonary disease: clinical integrative physiology. Clinics in chest medicine. 2014;35(1):51-69. Available at: http://svmi.web.ve/wh/ intertips/2.EPOC-FISIOPATOLOGIA.pdf
  6. Елисеев В.А. Комплексное лечение больных рецидивирующим бронхитом в фазе ремиссии: автореф. дис…. д.м.н. Барнаул, 2015. Доступно по: http://medical-diss.com/medicina/kompleksnoe-lechenie-bolnyh-retsidiviruyuschim-bronhitom-v-faze-remissii
  7. Пономарева И.Б. Клиническая оценка силы и выносливости дыхательной мускулатуры у больных хронической обструктивной болезнью легких старческого возраста: дис. … к.м.н. Рязань, 2010. Доступно по: http://medical-diss.com/medicina/klinicheskaya-otsenka-sily-i-vynoslivosti-dyhatelnoy-muskulatury-u-bolnyh-hronicheskoy-obstruktivnoy-boleznyu-legkih-star
  8. Авдеев С.Н. Оценка силы дыхательных мышц в клинической практике. Практическая пульмонология. 2008;4:2-17. Доступно по: https://elibrary.ru/download/elibrary_11699679_50507638.pdf
  9. Kaminska M, Noel F, Petrof BJ. Optimal method for assessment of respiratory muscle strength in neuromuscular disorders using sniff nasal inspiratory pressure (SNIP). PLOS ONE. 2017;12(5):e0177723. http://dx.doi.org/10.1371/journal.pone.0177723
  10. Fernandes M, Cukier A, Ambrosino N, Leite J.J, Zanetti Feltrim M.I. Respiratory pattern, thoracoabdominal motion and ventilation in chronic airway obstruction. Monaldi Archives for Chest Disease. 2016;67(4):209-16. http://dx.doi.org/10.4081/monaldi.2007.477
  11. Sharp J.T, Hyatt R.E. Mechanical and Electrical Properties of Respiratory Muscles. Comprehensive Physiology. 2011;3:1553-67. http://dx.doi.org/10.1002/cphy.cp030323
  12. Платонова И.С. Морфологические изменения дыхательных мышц у больных хронической обструктивной болезнью легких с разной степенью дыхательной недостаточностью: дис. … к.м.н. СПб., 2003. Доступно по: http://www.fesmu.ru/elib/Article.aspx?id=123714.
  13. Сегизбаева М.О., Александрова Н.П. Оценка устойчивости разных групп инспираторных мышц к утомлению при физической нагрузке на фоне моделируемой обструкции дыхательных путей. Физиология человека. 2014;40(6):114-22. http://dx.doi.org/10.7868/ s0131164614050130
  14. Mathur S, Brooks D, Carvalho C.R.F. Structural alterations of skeletal muscle in copd. Frontiers in Physiology. 2014;104(5):1-8. http://dx.doi.org/10.3389/fphys.2014.00104
  15. Gea J, Agusti A, Roca J. Pathophysiology of muscle dysfunction in COPD. J Applied Physiology. 2013;114(9):1222-34. http://dx.doi.org/ 10.1152/japplphysiol.00981.2012
  16. Schiaffino S, Dyar K.A, Ciciliot S, Blaauw B, Sandri M. Mechanisms regulating skeletal muscle growth and atrophy. FEBS J. 2013;280(17):4294-314. http://dx.doi.org/10.1111/febs.12253
  17. Суханова Г.И., Киняйкин М.Ф., Рассохина Н.Ю., Крамар А.В. Роль гипоксемии в развитии дисфункции мускулатуры верхних конечностей при хронической обструктивной болезни легких. Тихоокеанский медицинский журнал. 2012;1(47):90-2. Доступно по: https://elibrary.ru/item.asp?id=22670355
  18. Remels A.H.V, Gosker H.R, Langen R.C.J, Schols A.M.W.J. The mechanisms of cachexia underlying muscle dysfunction in COPD. J Applied Physiology. 2012;114(9):1253-62. http://dx.doi.org/10.1152/japplphysiol. 00790.2012
  19. Ciciliot S, et al. Muscle type and fiber type specificity in muscle wasting. The International J Biochemistry & Cell Biology. 2013;45(10):2191-9. http://dx.doi.org/10.1016/j.biocel.2013.05.016
  20. Clanton T.L, Levine S. Respiratory muscle fiber remodeling in chronic hyperinflation: dysfunction or adaptation? J Applied Physiology. 2009;107(1):324-35. http://dx.doi.org/10.1152/japplphysiol.00173.2009
  21. Barreiro E, Gea J. Molecular and biological pathways of skeletal muscle dysfunction in chronic obstructive pulmonary disease. Chronic Respiratory Disease. 2016;13(3):297-311. http://dx.doi.org/10.1177/147 9972316642366
  22. Cojocaru C, et al. A biological perspective for the management of chronic obstructive pulmonary disease by testosterone. Archives of Biological Sciences. 2015;67(1):257-9. http://www.doiserbia.nb.rs/img/ doi/0354-4664/2015/0354-46641400035C.pdf
  23. Гончаров Н.П., Кация Г.В. Дегидроэпиандростерон: биосинтез, метаболизм, биологическое действие и клиническое применение (аналитический обзор). Андрология и генитальная хирургия. 2015;16(1):13-22. doi: 10.17650/2070-9781-2015-1-13-22
  24. Levin O.S, Polunina A.G, Demyanova M.A, Isaev F.V. Steroid myopathy in patients with chronic respiratory diseases. J Neurological Sciences. 2014;338(1-2):96-101. http://dx.doi.org/10.1016/j.jns.2013.12. 023
  25. Mantilla C.B, Sieck G.C. Impact of diaphragm muscle fiber atrophy on neuromotor control. Respiratory Physiology & Neurobiology. 2013;189(2):411-8. http://dx.doi.org/10.1016/j.resp.2013.06.025
  26. Laveneziana P, Webb K.A, Wadell K, Neder J.A, O’Donnell D.E. Does expiratory muscle activity influence dynamic hyperinflation and exertional dyspnea in COPD? Respiratory Physiology & Neurobiology. 2014;199:24-33. http://dx.doi.org/10.1016/j.resp.2014.04.005
  27. Weatherald J, Lougheed M.D, Taillé C, Garcia G. Mechanisms, measurement and management of exertional dyspnoea in asthma. European Respiratory Review. 2017;26(144):170015. http://dx.doi.org/ 10.1183/16000617.0015-2017
  28. Мухарлямов Ф.Ю., Сычева М.Г., Рассулова М.А. Тренировка дыхательных мышц по методу нормокапнической гипервентиляции у больных хронической обструктивной болезнью легких и бронхиальной астмой. Вестник Национального медико - хирургического центра им. Н.И. Пирогова. 2015;10(3):109-12. Доступно по: https://elibrary.ru/download/elibrary_26508445_19489 114.pdf
  29. Баркова А.В. и др. Параметры активности местного и системного воспаления у больных бронхиальной астмой женщин вне обострения заболевания. Ученые записки СПбГМУ им. акад. И.П. Павлова. 2016;23(3):47-51. Доступно по: https://elibrary.ru/download/elibrary_ 28361330_96401650.pdf
  30. Pereira L.F.F, Mancuzo E.V, Rezende C.F, Côrrea R.A. Six - minute walk test and respiratory muscle strength in patients with uncontrolled severe asthma: a pilot study. J Brasileiro de Pneumologia. 2015;41(3):211-8. http://dx.doi.org/10.1590/s1806-37132015000004483
  31. Ramos E, de Oliveira L.V, Silva A, Costa I, Corrêa J.C, Costa D, et al. Peripheral muscle strength and functional capacity in patients with moderate to severe asthma. Multidisciplinary Respiratory Medicine. 2015;10(1):3-10. http://dx.doi.org/10.1186/2049-6958-10-3
  32. Aguiar K.A, et al. A single section of stretch of the respiratory muscles does not influence the pulmonary volume of asthmatics during exercise. J Respiratory and Cardiovascular Physical Therapy. 2016;3(1):3-13. Available at: https://www.researchgate.net/profile/ntonio_Sarmento3/publication/301541319_A_Single_Section_of_Stretch_of_the_Respiratory_Muscles_Does_Not_Influence_the_Pulmonary_Volume_of_Asthmatics_During_Exercise/links/5717a17708aed8a339e5aaff.pdf
  33. Gimeno-Santos E, Fregonezi G.A, Torres-Castro R, Rabinovich R, Vilaró J. Inspiratory muscle training and exercise versus exercise alone for asthma. Cochrane Database of Systematic Reviews. 2015;7:1-10. http://dx.doi.org/10.1002/14651858.cd011794
  34. Kuznetsov N.A, Luberto C.M, Avallone K, Kraemer K, Mc Leish A.C, Riley M.A. Characteristics of postural control among young adults with asthma. J Asthma. 2014;52(2):191-7. http://dx.doi.org/10.3109/ 02770903.2014.954290
  35. Bodine S.C, Furlow J.D. Glucocorticoids and Skeletal Muscle. Glucocorticoid Signaling. 2015:145-76. Available from: http://dx.doi.org/ 10.1007/978-1-4939-2895-8_7
  36. Полунина А.Г., Исаев Ф.В., Демьянова М.А. Стероидная миопатия. Журнал неврологии и психиатрии им. С.С. Корсакова. 2012;112(10):60-4. Доступно по: https://www.researchgate.net/profile/Anna_Polunina/publication/233949279_Steroidnaa_miopatia/links/0f317532ddb5734259000000/Steroidnaa-miopatia.pdf
  37. Teodorescu M, Xie A, Sorkness C.A, Robbins J, et al. Effects of Inhaled Fluticasone on Upper Airway during Sleep and Wakefulness in Asthma: A Pilot Study. J Clinical Sleep Medicine. 2014;10(2):183-93. http://dx.doi.org/10.5664/jcsm.3450
  38. Qiao H, Cheng H, Liu L, Yin J. Potential factors involved in the causation of rhabdomyolysis following status asthmaticus. Allergy, Asthma & Clinical Immunology. 2016;12(1):1-7. http://dx.doi.org/10.1186/ s13223-016-0149-6
  39. He Y, Shi J, Yi W, Ren X, et al. Discovery of a highly potent glucocorticoid for asthma treatment. Cell Discovery. 2016;2:150-63. http://dx.doi.org/10.1038/celldisc.2015.51
  40. Verschakelen J, Vock P. Diseases of the Chest Wall, Pleura, and Diaphragm. Diseases of the Heart, Chest & Breast. 2015:99-103. http://dx.doi.org/10.1007/978-88-470-0633-1_17
  41. Tochino Y, et al. Asthma-COPD overlap syndrome-Coexistence of chronic obstructive pulmonary disease and asthma in elderly patients and parameters for their differentiation. J General and Family Medicine. 2017;18(5):5-11. Available at: http://onlinelibrary.wiley.com/ doi/10.1002/jgf2.2/epdf
  42. José A, Dal Corso S. Inpatient rehabilitation improves functional capacity, peripheral muscle strength and quality of life in patients with community - acquired pneumonia: a randomised trial. J Physiotherapy. 2016;62(2):96-102. http://dx.doi.org/10.1016/j.jphys. 2016.02.014
  43. Агеева Т.С. и др. Клинико - сцинтиграфическая характеристика и окислительные процессы в зависимости от распространенности инфильтративного поражения легочной ткани при внебольничных пневмониях. Терапевтический архив. 2011;83(3):31-7. Доступно по: https://elibrary.ru/item.asp?id=16373885
  44. Гельцер Б.И., Ким А.П., Котельников В.Н., Макаров А.Б. Особенности иммунного ответа у больных внебольничной пневмонией с разной степенью тяжести эндогенной интоксикации. Цитокины и воспаление. 2015;14(3):35-41. Доступно по: https://elibrary.ru/item.asp?id=26511105
  45. Сомов Д.А., Макарова М.Р., Макарова И.Н. Значение мышечного дисбаланса в двигательной терапии больных пневмонией. Вопросы курортологии, физиотерапии и лечебной физической культуры. 2015;92(3):7-10. Доступно по: https://www.mediasphera.ru/issues/ voprosy-kurortologii-fizioterapii-i-lechebnoj-fizicheskoj-kultury/2015/3/ downloads/ru/030042-8787201532
  46. Musher DM, Thorner AR. Community-acquired pneumonia. New England J Medicine. 2014;371(17):1619-28. doi: 10.1056/NEJ Mra1312885
  47. Faverio P, et al. The management of community-acquired pneumonia in the elderly. Eur J Intern Med. 2014;25(4):312-9. http:// dx.doi.org/10. 1016/j.ejim.2013.12.001
  48. Murad A, Li PZ, Dial S, Shahin J. The role of noninvasive positive pressure ventilation in community-acquired pneumonia. J Critical Care. 2015;30(1):49-54. http://dx.doi.org/10.1016/j.jcrc.2014. 09.021
  49. Faisal A, Alghamdi B.J, Ciavaglia C.E, Elbehairy A.F, Webb K.A, Ora J, et al. Common Mechanisms of Dyspnea in Chronic Interstitial and Obstructive Lung Disorders. Amer J Respiratory and Critical Care Medicine. 2016;193(3):299-309. http://dx.doi.org/10.1164/rccm.201504-0841oc
  50. Fujisawa T, Hozumi H, Kono M, Enomoto N, Hashimoto D, Nakamura Y, et al. Prognostic Factors for Myositis-Associated Interstitial Lung Disease. PLoS ONE. 2014;9(6):e98824. http://dx.doi.org/10.1371/journal. pone.0098824
  51. Антелава О.А., Бондаренко И.Б., Чичасова Н.В., Насонов E.L. Респираторные нарушения при полимиозите/ дерматомиозите. Современная ревматология. 2014;8(1):31-8. http://dx.doi.org/10.14412/1996-7012-2014-1-31-38
  52. Rygiel K.A, Miller J, Grady J.P, Rocha M.C, et al. Mitochondrial and inflammatory changes in sporadic inclusion body myositis. Neuropathology and Applied Neurobiology. 2015;41(3):288-303. http://dx.doi.org/10.1111/nan.12149
  53. Carstens P.O, Schmidt J. Diagnosis, pathogenesis and treatment of myositis: recent advances. Clinical & Experimental Immunology. 2014;175(3):349-58. http://dx.doi.org/10.1111/cei.12194
  54. Walterspacher S, Schlager D, Walker D.J, Müller-Quernheim J, Windisch W, Kabitz H-J. Respiratory muscle function in interstitial lung disease. European Respiratory J. 2012;42(1):211-9. http://dx.doi.org/10. 1183/09031936.00109512
  55. Elia D, Kelly J.L, Martolini D, Renzoni E.A, Boutou A.K, Chetta A, et al. Respiratory Muscle Fatigue following Exercise in Patients with Interstitial Lung Disease. Respiration. 2013;85(3):220-7. http://dx.doi.org/10.1159/ 000338787
  56. Güttsches A.K, Balakrishnan-Renuka A, Kley R.A, Tegenthoff M, et al. ATOH8: a novel marker in human muscle fiber regeneration. Histochemistry and Cell Biology. 2014;143(5):443-52. http://dx.doi.org/ 10.1007/s00418-014-1299-6
  57. Andrews JS, Trupin L, Schmajuk G, Barton J, et al. Muscle Strength, Muscle Mass, and Physical Disability in Women With Systemic Lupus Erythematosus. Arthritis Care & Research. 2014;67(1):120-7. http://dx. doi.org/10.1002/acr.22399
  58. Mittoo S, Swigris J.J. Pulmonary Manifestations of Systemic Lupus Erythematosus (SLE). Pulmonary Manifestations of Rheumatic Disease. 2014;35(2):61-72. http://dx.doi.org/10.1007/978-1-4939-0770-0_6
  59. Panagiotou M, Polychronopoulos V, Strange C. Respiratory and lower limb muscle function in interstitial lung disease. Chronic Respiratory Disease. 2016;13(2):162-72. http://dx.doi.org/10.1177/1479972315626 014
  60. Авдеев С.Н. Идиопатический фиброз легких: новая парадигма. Терапевтический архив. 2017;89(1):112-22. http://dx.doi.org/10.26442/20 75- 1753_19.3.17-23
  61. Marcellis R.G.J, Lenssen A.F, Elfferich M.D.P, De Vries J, et al. Exercise capacity, muscle strength and fatigue in sarcoidosis. European Respiratory J. 2011;38(3):628-34. http://dx.doi.org/10.1183/0903 1936.00117710
  62. Kesici B, Toros A.B, Bayraktar L, Dervisoglu A. Sarcoidosis Incidentally Diagnosed: A Case Report. Case Reports in Pulmonology. 2014;2014:1-3. http://dx.doi.org/10.1155/2014/702868
  63. Nowinski A, et al. Comorbidities associated with sarcoidosis-Results from long - term observational study. European Respiratory J. 2014;44(58):461. Available at: http://erj.ersjournals.com/content/44/ Suppl_58/P461.short
  64. Celada L.J, Hawkins C, Drake W.P. The Etiologic Role of Infectious Antigens in Sarcoidosis Pathogenesis. Clinics in Chest Medicine. 2015;36(4):561-8. http://dx.doi.org/10.1016/j.ccm.2015.08.001

Copyright (c) 2019 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies