Liver diseases: The pathogenetic role of the gut microbiome and the potential of treatment for its modulation


Cite item

Full Text

Abstract

The paper gives an update on the role of the gut microbiome (GM) in the development of nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, alcoholic liver disease, liver cirrhosis (LC), and its complications, such as hepatic encephalopathy (HE) and hepatocellular carcinoma (HCC), and discusses the possibilities of its correction with prebiotics, probiotics, synbiotics, antibiotics, and fecal microbiota transplantation (FMT). The pathophysiology of the liver diseases in question demonstrates some common features that are characterized by pathogenic changes in the composition of the gastrointestinal tract microflora, by intestinal barrier impairments, by development of endotoxemia, by increased liver expression of proinflammatory factors, and by development of liver inflammation. In progressive liver disease, the above changes are more pronounced, which contributes to the development of LC, HE, and HCC. GM modulation using prebiotics, probiotics, synbiotics, antibiotics, and FMT diminishes dysbacteriosis, strengthens the intestinal mucosal barrier, reduces endotoxemia and liver damage, and positively affects the clinical manifestations of HE. Further investigations are needed, especially in humans, firstly, to assess a relationship of GM to the development of liver diseases in more detail and, secondly, to obtain evidence indicating the therapeutic efficacy of GM-modulating agents in large-scale, well-designed, randomized, controlled, multicenter studies.

About the authors

K A Aitbaev

Национальный центр кардиологии и терапии Минздрава Кыргызской Республики

Бишкек, Кыргызская Республика

I T Murkamilov

Кыргызская государственная медицинская академия им. И.К. Ахунбаева

Бишкек, Кыргызская Республика

V V Fomin

ФГАОУ ВО «Первый МГМУ им. И.М. Сеченова» Минздрава России

Москва, Россия

References

  1. Catala M, Anton A, Portoles MT. Characterization of the simultaneous binding of Escherichia coli endotoxin to Kupffer and endothelial liver cells by flow cytometry. Cytometry. 1999;36: (2):123-30. PMID: 10554160
  2. Abu-Shanab A, Quigley EM. The role of the gut microbiota in nonalcoholic fatty liver disease. Nat Rev Gastroenterol Hepatol. 2010;7:691-701. https://doi.org/10.1038/nrgastro. 2010.172
  3. Backhed F, Manchester JK, Semenkovich CF et al. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci USA. 2007;104: 979-984. https://doi.org/10.1073/pnas.0605374104
  4. Backhed F, Ding H, Wang T et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA. 2004;101:15718-15723. https://doi.org/10.1073/pnas.0407076101
  5. Turnbaugh PJ, Ley RE, Mahowald MA et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444: 1027-1031. https://doi.org/10.1038/nature05414
  6. Ley RE, Turnbaugh PJ, Klein S et al. Microbial ecology: human gut microbes associated with obesity. Nature. 2006;444:1022-1023. https://doi.org/10.1038/4441022a
  7. Sabate JM, Jouet P, Harnois F et al. High prevalence of small intestinal bacterial overgrowth in patients with morbid obesity: a contributor to severe hepatic steatosis. Obes Surg. 2008;18:371-377. https://doi.org/10.1007/s11695-007-9398-2
  8. Caricilli AM, Saad MJ. The role of gut microbiota on insulin resistance. Nutrients. 2013;5:829-851. https://doi.org/10.3390/nu5030829
  9. Volynets V, Kuper MA, Strahl S et al. Nutrition, intestinal permeability, and blood ethanol levels are altered in patients with nonalcoholic fatty liver disease (NAFLD). Dig Dis Sci. 2012;57:1932-1941. https://doi.org/10.1007/s10620-012-2112-9
  10. Creely SJ, McTernan PG, Kusminski CM et al. Lipopolysaccharide activates an innate immune system response in human adipose tissue in obesity and type 2 diabetes. Am J Physiol Endocrinol Metab. 2007;292:E740-747. https://doi.org/10.1152/ajpendo.00302.2006
  11. Li Z, Yang S, Lin H et al. Probiotics and antibodies to TNF inhibit inflammatory activity and improve nonalcoholic fatty liver disease. Hepatology. 2003;37:343-350. https://doi.org/10.1053/jhep. 2003.50048
  12. Day CP, James OF. Steatohepatitis: a tale of two «hits». Gastroenterology. 1998;114:842-845. PMID: 9547102
  13. Gao, Jeong WI, Tian Z. Liver: an organ with predominant innate immunity. Hepatology. 2008;47:729-736. https://doi.org/10.1002/hep.22034
  14. Elinav E, Strowig T, Kau AL et al. NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell. 2011;145:745-757. https://doi.org/10.1016/j.cell. 2011.04.022
  15. Henao-Mejia J, Elinav E, Jin C et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature. 2012;482:179-185. https://doi.org/10.1038/nature10809
  16. Ye D, Li FY, Lam KS et al. Toll-like receptor-4 mediates obesity-induced non-alcoholic steatohepatitis through activation of X-box binding protein-1 in mice. Gut. 2012;61:1058-1067. https://doi.org/10.1136/gutjnl-2011-300269
  17. Csak T, Velayudham A, Hritz I et al. Deficiency in myeloid differentiation factor-2 and toll-like receptor 4 expression attenuates nonalcoholic steatohepatitis and fibrosis in mice. Am J Physiol Gastrointest Liver Physiol. 2011;300:G433-541. https://doi.org/10.1152/ajpgi.00163.2009
  18. Crespo J, Cayon A, Fernandez-Gil P et al. Gene expression of tumor necrosis factor alpha and TNF-receptors, p55 and p75, in nonalcoholic steatohepatitis patients. Hepatology. 2001;34:1158-1163. https://doi.org/10.1053/jhep. 2001.29628
  19. Cope K, Risby T, Diehl AM. Increased gastrointestinal ethanol production in obese mice: implications for fatty liver disease pathogenesis. Gastroenterology. 2000;119:1340-1347.
  20. Sarkola T, Eriksson CJ. Effect of 4-methylpyrazole on endogenous plasma ethanol and methanol levels in humans. Alcohol Clin Exp Res. 2001;25:513-516. PMID: 11329490
  21. Zhu L, Baker SS, Gill C et al. Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH. Hepatology. 2013;57: 601-609. https://doi.org/10.1002/hep.26093
  22. Baker SS, Baker RD, Liu W et al. Role of alcohol metabolism in non-alcoholic steatohepatitis. PLoS ONE. 2010;(8):5:e9570. https://doi.org/10.1371/journal.pone.0009570
  23. Rao R. Endotoxemia and gut barrier dysfunction in alcoholic liver disease. Hepatology. 2009;50:638-644. https://doi.org/10.1002/hep.23009
  24. Mutlu EA, Gillevet PM, Rangwala H et al. Colonic microbiome is altered in alcoholism. Am J Physiol Gastrointest Liver Physiol. 2012;302:G966-978. https://doi.org/10.1152/ajpgi.00380.2011
  25. Mukhopadhya I, Hansen R, El-Omar EM et al. IBD-what role do Proteobacteria play? Nat Rev Gastroenterol Hepatol. 2012;9:219-230. https://doi.org/10.1038/nrgastro. 2012.14
  26. Hartmann P, Chen WC, Schnabl B. The intestinal microbiome and the leaky gut as therapeutic targets in alcoholic liver disease. Front Physiol. 2012;(11)3:402. https://doi.org/10.3389/fphys. 2012.00402
  27. Amin PB, Diebel LN, Liberati DM. Dose-dependent effects of ethanol and E. coli on gut permeability and cytokine production. J Surg Res. 2009;157:187-192. https://doi.org/10.1016/j.jss. 2008.10.028
  28. Basuroy S, Sheth P, Mansbach CM et al. Acetaldehyde disrupts tight junctions and adherens junctions in human colonic mucosa: protection by EGF and L-glutamine. Am J Physiol Gastrointest Liver Physiol. 2005;289:G367-375. https://doi.org/10.1152/ajpgi.00464.2004
  29. Forsyth CB, Tang Y, Shaikh M et al. Role of snail activation in alcohol-induced iNOS-mediated disruption of intestinal epithelial cell permeability. Alcohol Clin Exp Res. 2011;35:1635-1643. https://doi.org/10.1111/j.1530-0277. 2011.01510.x
  30. Tang Y, Forsyth CB, Farhadi A et al. Nitric oxide-mediated intestinal injury is required for alcohol-induced gut leakiness and liver damage. Alcohol Clin Exp Res. 2009;33:1220-1230. https://doi.org/10.1111/j.1530-0277. 2009.00946.x
  31. Lakshmi CP, Ghoshal UC, Kumar S et al. Frequency and factors associated with small intestinal bacterial overgrowth in patients with cirrhosis of the liver and extra hepatic portal venous obstruction. Dig Dis Sci. 2010;55:1142-1148. https://doi.org/10.1007/s10620-009-0826-0
  32. Gupta A, Dhiman RK, Kumari S et al. Role of small intestinal bacterial overgrowth and delayed gastrointestinal transit time in cirrhotic patients with minimal hepatic encephalopathy. J Hepatol. 2010;53:849-855. https://doi.org/10.1016/j.jhep. 2010.05.017
  33. Chen Y, Yang F, Lu H et al. Characterization of fecal microbial communities in patients with liver cirrhosis. Hepatology. 2011;54: 562-572. https://doi.org/10.1002/hep.24423
  34. Gomez-Hurtado I, Santacruz A, Peiro G et al. Gut microbiota dysbiosis is associated with inflammation and bacterial translocation in mice with CCl4-induced fibrosis. PLoS ONE. 2011;6:(7):e23037. https://doi.org/10.1371/journal.pone.0023037
  35. Such J, Frances R, Munoz C et al. Detection and identification of bacterial DNA in patients with cirrhosis and culture-negative, nonneutrocytic ascites. Hepatology. 2002;36:135-141. https://doi.org/10.1053/jhep. 2002.33715
  36. Papp M, Norman GL, Vitalis Z et al. Presence of anti-microbial antibodies in liver cirrhosis - a tell-tale sign of compromised immunity? PLoS ONE. 2010;5:e12957. https://doi.org/10.1371/journal.pone.0012957
  37. Scarpellini E, Valenza V, Gabrielli M et al. Intestinal permeability in cirrhotic patients with and without spontaneous bacterial peritonitis: is the ring closed? Am J Gastroenterol. 2010;105:323-327. https://doi.org/10.1038/ajg. 2009.558
  38. Steffen EK, Berg RD, Deitch EA. Comparison of translocation rates of various indigenous bacteria from the gastrointestinal tract to the mesenteric lymph node. J Infect Dis. 1988;157:1032-1038. PMID: 3283254
  39. Garcia-Tsao G. Spontaneous bacterial peritonitis. Gastroenterol.Clin North Am. 1992;21:257-275. PMID: 1568776
  40. Natarajan SK, Ramamoorthy P, Thomas S et al. Intestinal mucosal alterations in rats with carbon tetrachloride induced cirrhosis: changes in glycosylation and luminal bacteria. Hepatology. 2006;43:837-846. https://doi.org/10.1002/hep.21097
  41. Liu Q, Duan ZP, Ha DK et al.Synbiotic modulation of gut flora: effect on minimal hepatic encephalopathy in patients with cirrhosis. Hepatology. 2004;39:1441-1449. https://doi.org/10.1002/hep.20194
  42. Llovet JM, Bartoli R, March F et al. Translocated intestinal bacteria cause spontaneous bacterial peritonitis in cirrhotic rats: molecular epidemiologic evidence. J Hepatol. 1998;28:307-313. PMID: 9580278
  43. Guarner C, Runyon BA, Young S et al. Intestinal bacterial overgrowth and bacterial translocation in cirrhotic rats with ascites. J Hepatol. 1997;26:1372-1378. PMID: 9210626
  44. Garcia-Gonzalez M, Boixeda D, Herrero D et al. Effect of granulocyte macrophage colony-stimulating factor on leukocyte function in cirrhosis. Gastroenterology. 1993;105:527-531. PMID: 8335207
  45. Such J, Guarner C, Enriquez J et al. Low C3 in cirrhotic ascites predisposes to spontaneous bacterial peritonitis. J Hepatol. 1988;6:80-84. PMID: 3279108
  46. Rimola A, Soto R, Bory F. Reticuloendothelial system phagocytic activity in cirrhosis and its relation to bacterial infections and prognosis. Hepatology. 1984;4:53-58. PMID: 6693068
  47. Lamontagne A, Long RE, Comunale MA et al. Altered functionality of anti-bacterial antibodies in patients with chronic hepatitis C virus infection. PLoS ONE. 2013;8:e64992. https://doi.org/10.1371/journal.pone.0064992
  48. Inamura T, Miura S, Tsuzuki Y et al. Alteration of intestinal intraepithelial lymphocytes and increased bacterial translocation in a murine model of cirrhosis. Immunol Lett. 2003;90:3-11. PMID: 14611901
  49. Dhiman R.K. Gut microbiota and hepatic encephalopathy. Metab Brain Dis. 2013;28:321-326. https://doi.org/10.1007/s11011-013-9388-0
  50. Wright G, Davies NA, Shawcross DL et al. Endotoxemia produces coma and brain swelling in bile duct ligated rats. Hepatology. 2007;45:1517-1526. https://doi.org/10.1002/hep.21599
  51. Bajaj JS, Ridlon JM, Hylemon PB et al. Linkage of gut microbiome with cognition in hepatic encephalopathy. Am J Physiol Gastrointest Liver Physiol. 2012;302:G168-G175. https://doi.org/10.1152/ajpgi.00190.2011
  52. Shukla S, Shukla A, Mehboob S, Guha S. Meta-analysis: the effect of gut flora modulation using prebiotics, probiotics and synbiotics on minimal hepatic encephalopathy. Aliment Pharmacol Ther. 2011;33:662-671. https://doi.org/10.1111/j.1365-2036. 2010.04574.x
  53. Huang B, Zhao J, Unkeless JC. R signaling by tumor and immune cells: a double-edged sword. Oncogene. 2008;27:218-224. https://doi.org/10.1038/sj.onc.1210904
  54. Yu LX, Yan HX, Liu Q et al. Endotoxin accumulation prevents carcinogen-induced apoptosis and promotes liver tumorigenesis in rodents. Hepatology. 2010;52:1322-1333. https://doi.org/10.1002/hep.23845
  55. Dapito DH, Mencin A, Gwak GY et al. Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4. Cancer Cell. 2012;21:504-516. https://doi.org/10.1016/j.ccr. 2012.02.007
  56. Maeda S. NF-kappaB, JNK, and TLR signaling pathways in hepatocarcinogenesis. Gastroenterol Res Pract. 2010;2010:367694. https://doi.org/10.1155/2010/367694
  57. Karin M, Greten FR. NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol. 2005;5:749-759. https://doi.org/10.1038/nri1703
  58. Yoshimoto S, Loo TM, Atarashi K et al. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature. 2013;499:97-101. https://doi.org/10.1038/nature12347
  59. Patel R, DuPont HL. New approaches for bacteriotherapy: prebiotics, new-generation probiotics, and synbiotics. Clin Infect Dis. 2015;60(Suppl.2):S108-S121. https://doi.org/10.1093/cid/civ177
  60. Cummings JH, Macfarlane GT. Gastrointestinal effects of prebiotics. Br J Nutr. 2002;87(Suppl.2):S145-S15179. https://doi.org/10.1079/BJNBJN/2002530
  61. Bouhnik Y, Flourié B, D’Agay-Abensour L et al. Administration of transgalactooligosaccharides increases fecal bifidobacteria and modifies colonic fermentation metabolism in healthy humans. J Nutr. 1997;127(3):444-448.
  62. Riggio O, Varriale M, Testore GP et al. Effect of lactitol and lactulose administration on the fecal flora in cirrhotic patients. J Clin. Gastroenterol. 1990;12(4):433-436. PMID: 2398251
  63. Bajaj JS, Heuman DM, Hylemon P et al. Altered profile of human gut microbiome is associated with cirrhosis and its complications. J Hepatol. 2014;60(5):940-947. https://doi.org/10.1016/j.jhep2013.12.019
  64. Chen P, Torralba M, Tan J et al. Supplementation of saturated long-chain fatty acids maintains intestinal eubiosis and reduces ethanol-induced liver injury in mice. Gastroenterology. 2015; 148(1):203-214. https://doi.org/10.1053/j.gastro.2014.09.014
  65. Kailasapathy K, Chin J. Survival and therapeutic potential of probiotic organisms with reference to Lactobacillus acidophilus and Bifidobacterium spp. Immunol Cell Biol. 2000;78(1):80-88. https://doi.org/10.1046/j.1440-1711. 2000.00886.x
  66. Solga SF, Buckley G, Clark JM et al. The effect of probiotic on hepatic steatosis. J Clin Gastroenterol. 2008;42(10):1117-1119. https://doi.org/10.1097/MCG.0b013e31816d920c
  67. Wong VW, Won GL, Chim AM et al. Treatment of nonalcoholic steatohepatitis with probiotics. A proof-of-concept study. Ann Hepatol. 2013;12(2):256-262. PMID: 23396737
  68. Ma YY, Li L, Yu CH et al. Effects of probiotics on nonalcoholic fatty liver disease: a meta-analysis. World J Gastroenterol. 2013;19(40):6911-6691. https://doi.org/10.3748/wjg.v19.i40.6911
  69. Nanji AA, Khettry U, Sadrzadeh SM. Lactobacillus feeding reduces endotoxemia and severity of experimental alcoholic liver (disease). Proc Soc Exp Biol Med. 1994;205(3):243-247. PMID: 8171045
  70. Forsyth CB, Farhadi A, Jakate SM. Lactobacillus GG treatment ameliorates alcohol-induced intestinal oxidative stress, gut leakiness, and liver injury in a rat model of alcoholic steatohepatitis. Alcohol. 2009;43(2):163-172. https://doi.org/10.1016/j.alcohol. 2008.12.009
  71. Mutlu E, Keshavarzian A, Engen P et al. Intestinal dysbiosis: a possible mechanism of alcohol-induced endotoxemia and alcoholic steatohepatitis in rats. Alcohol Clin Exp Res. 2009;33(10):1836-1846. https://doi.org/10.1111/j.1530-0277. 2009.01022.x
  72. Kirpich IA, Solovieva NV, Leikhter SN et al. Probiotics restore bowe flora and improve liver enzymes in human alcohol-induced liver injury: a pilot study. Alcohol. 2008;42(8):675-682. https://doi.org/10.1016/j.alcohol.2008.08.006
  73. Rincón D, Vaquero J, Hernando A et al. Oral probiotic VSL#3 attenuates the circulatory disturbances of patients with cirrhosis and ascites. Liver Int. 2014;34(10):1504-1512. https://doi.org/10.1111/liv.12539
  74. Lata J, Novotný I, Príbramská V et al. The effect of probiotics on gut flora, level of endotoxin and Child-Pugh score in cirrhotic patients: results of a double-blind randomized study. Eur J Gastroenterol Hepatol. 2007;19(12):1111-1113. https://doi.org/10.1097/MEG.0b013e3282efa40e
  75. Dhiman RK, Rana B, Agrawal S et al. Probiotic VSL#3 reduces liver disease severity and hospitalization in patients with cirrhosis: a randomized, controlled trial. Gastroenterology. 2014;147(6):1327-1337. https://doi.org/10.1053/j.gastro.2014.08.031
  76. McGee RG, Bakens A, Wiley K et al. Probiotics for patients with hepatic encephalopathy. Cochrane Database Syst. Rev. 2011;(11): CD008716. https://doi.org/10.1002/14651858
  77. Lunia MK, Sharma BC, Sharma P et al. Probiotics prevent hepatic encephalopathy in patients with cirrhosis: a randomized controlled trial. Clin Gastroenterol Hepatol. 2014;12(6):1003-8.e1. https://doi.org/10.1016/j.cgh.2013.11.006
  78. Bajaj JS, Heuman DM, Hylemon PB et al. Randomised clinical trial: Lactobacillus GG modulates gut microbiome, metabolome and endotoxemia in patients with cirrhosis. Aliment Pharmacol Ther. 2014;39(10):1113-1125. https://doi.org/10.1111/apt.12695
  79. Eslamparast T, Poustchi H, Zamani F. Synbiotic supplementation in nonalcoholic fatty liver disease: a randomized, double-blind, placebo-controlled pilot study. Am J Clin Nutr. 2014;99(3):535-542. https://doi.org/10.3945/ajcn.113.068890.
  80. Malaguarnera M, Vacante M, Antic T et al. Bifidobacterium longum with fructo-oligosaccharides in patients with non alcoholic steatohepatitis. Dig Dis Sci. 2012;57(2):545-553. https://doi.org/10.1007/s10620-011-1887-4
  81. Malaguarnera M, Gargante MP, Malaguarnera G et al. Bifidobacterium combined with fructo-oligosaccharide versus lactulose in the treatment of patients with hepatic encephalopathy. Eur J Gastroenterol Hepatol. 2010;22(2):199-206. https://doi.org/10.1097/MEG.0b013e328330a8d3
  82. Liu Q, Duan ZP, Ha DK et al. Synbiotic modulation of gut flora: effect on minimal hepatic encephalopathy in patients with cirrhosis. Hepatology. 2004;39(5):1441-1449. https://doi.org/10.1002/hep.20194
  83. Runyon B.A. AASLD Practice Guidelines Committee. Management of adult patients with ascites due to cirrhosis: an update. Hepatology. 2009;49(6):2087-2107. https://doi.org/10.1002/hep.22853
  84. Bass NM, Mullen KD, Sanyal A et al. Rifaximin treatment in hepatic encephalopathy. N Engl J Med. 2010;362(12):1071-1081. https://doi.org/10.1056/NEJMoa0907893
  85. Bajaj JS, Heuman DM, Sanyal AJ et al. Modulation of the metabiome by rifaximin in patients with cirrhosis and minimal hepatic encephalopathy. PLoS ONE. 2013;8(4):e60042. https://doi.org/10.1371/journal.pone.0060042
  86. Kao D, Roach B, Park H et al. Fecal microbiota transplantation in the management of hepatic encephalopathy. Hepatology. 2016;63:339-340. https://doi.org/10.1002/hep.28121
  87. Shen TC, Albenberg L, Bittinger K et al. Engineering the gut microbiota to treat hyperammonemia. J Clin Invest. 2015;125(7):2841-2850. https://doi.org/10.1172/JCI79214

Copyright (c) 2017 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies