The spectrum of primary drug resistance of Mycobacterium tuberculosis in patients with tuberculosis in relation to human immunodeficiency virus status


Cite item

Full Text

Abstract

Aim. To estimate the detection rate and spectrum of primary drug resistance of Mycobacterium tuberculosis (MBT) in patients with tuberculosis (TB) in relation to their human immunodeficiency virus (HIV) status in a region with high HIV infection rates (the Perm Territory) and to compare of drug-resistant MBT (DR-MBT) in patients with HIV/TB co-infection, by using phenotypic and molecular genetic testing (MGT) methods. Subjects and methods. The results of sputum bacteriological examination were analyzed in 178 HIV-infected patients and 354 non-HIV-infected individuals with a TB diagnosis made in the period July 1, 2014 to August 1, 2015. The diagnostic algorithm for all patients involved a duplicate sputum test for MBT by two techniques: fluorescence microscopy (FM) and inoculation into the Levenstein-Jensen dense culture medium. In patients with HIV/TB, the bacteriological examination was complemented with two more methods: detection of MBT DNA by a real-time polymerase chain reaction assay using the AmpliTube-RV system (Synthol, Russia); and inoculation into the Middlebrook liquid nutrient medium, by applying the automated BACTEC MGIT 960 system. Results. In patients with HIV/TB, the sensitivity of FM proved to be lower than in those with TB (24.2 and 32.8%, respectively; p<0.05) and that of inoculations into the dense culture medium was comparable regardless of HIV status (60.7 and 57.1%, respectively; p>0.05). The primary drug resistance of MBT in patients with HIV-TB was higher than that in HIV-negative individuals (60.2 and 41.6%, respectively; p<0.05). The phenotypic method (inoculation into the Levenstein-Jensen culture medium) and MGT revealed their agreement for the resistance of MBT to rifampicin (the most clinically significant drug in the choice of treatment policy) in 88.5% of the patients with HIV/TB. Conclusion. In patients with HIV/TB, the sensitivity of FM for detecting acid-resistant mycobacteria was lower than in those with TB and that of inoculations into the dense medium was comparable regardless of HIV status.

About the authors

V N Zimina

ФГАОУ ВО «Российский университет дружбы народов»

Москва, Россия

O E Mikova

ГКУЗ Пермского края «Пермский краевой центр по профилактике и борьбе со СПИД и инфекционными заболеваниями»

Пермь, Россия

T A Varetskaya

ГКУЗ Пермского края «Пермский краевой центр по профилактике и борьбе со СПИД и инфекционными заболеваниями»

Пермь, Россия

D A Oborin

ГКУЗ Пермского края «Пермский краевой центр по профилактике и борьбе со СПИД и инфекционными заболеваниями»

Пермь, Россия

S Yu Degtyareva

ФГАОУ ВО «Российский университет дружбы народов»

Москва, Россия

V I Sergevnin

ФГБОУ ВО «Пермский государственный медицинский университет им. акад. Е.А. Вагнера» Минздрава России

Пермь, Россия

References

  1. WHO End TB strategy. WHO. Published 2015. Available at: http://www.who.int/tb/post2015_strategy/en/ Accessed May 31,2017
  2. World Health Organization. Global Tuberculosis Report 2016.; 2016. https://doi.org/ISBN 978 92 4 156539 4. Accessed May 31, 2017. Available at: http://www.who.int/tb/publications/global_report/en/
  3. Kendall EA, Fojo AT, Dowdy DW. Expected effects of adopting a 9 month regimen for multidrug-resistant tuberculosis: a population modelling analysis. Lancet Respir Med. 2017;5(3):191-199. https://doi.org/10.1016/S2213-2600(16)30423-4
  4. Aung KJM, Van Deun A, Declercq E, et al. Successful «9-month Bangladesh regimen» for multidrug-resistant tuberculosis among over 500 consecutive patients. Int J Tuberc Lung Dis. 2014; 18(10):1180-1187. https://doi.org/10.5588/ijtld.14.0100
  5. Moodley R, Godec TR. Short-course treatment for multidrug-resistant tuberculosis: the STREAM trials. Eur Respir Rev. 2016;25(139):29-35. https://doi.org/10.1183/16000617.0080-2015
  6. World Health Organization. WHO treatment guidelines for drug-resistant tuberculosis. Geneva, Switz. 2016. Accessed 31 May, 2017. Available at: http://www.who.int/tb/areas-of-work/drug-resistant-tb/treatment/resources/en/
  7. Campos PE, Suarez PG, Sanchez J, et al. Tuberculosis in HIV-Infected. Emerg Infect Dis. 2003;9(12):1571-1578. https://doi.org/10.3201/eid0912.020731
  8. Churchyard G.J., Corbett E.L., Kleinschmidt I., Mulder D., De Cock K.M. Drug-resistant tuberculosis in South African gold miners: Incidence and associated factors. Int J Tuberc Lung Dis. 2000;4(5):433-440.
  9. Mac-Arthur AJ, Gloyd S, Perdigao P, Noya A, Sacarlal J, Kreiss J. Characteristics of drug resistance and HIV among tuberculosis patients in Mozambique. Int J Tuberc Lung Dis. 2001;5(10):894-902.
  10. Espinal MA, Laserson K, Camacho M, et al. Determinants of drug-resistant tuberculosis: Analysis of 11 countries. Int J Tuberc Lung Dis. 2001;5(10):887-893.
  11. Quy HT, Buu TN, Cobelens FGJ, Lan NTN, Lambregts CSB, Borgdorff MW. Drug resistance among smear-positive tuberculosis patients in Ho Chi Minh City, Vietnam. Int J Tuberc Lung Dis. 2006;10(2):160-166.
  12. Mesfin YM, Hailemariam D, Biadglign S, Kibret KT, Glaziou P. Association between HIV/AIDS and Multi-Drug Resistance Tuberculosis: A Systematic Review and Meta-Analysis. Shukla D, ed. PLoS One. 2014;9(1):e82235. https://doi.org/10.1371/journal.pone.0082235
  13. Sahai J, Gallicano K, Swick L, al et. Reduced plasma concentrations of antituberculosis drugs in patients with HIV-infection. Ann Intern Med. 1997;127(4):289-293. https://doi.org/10.7326/0003-4819-127-4-199708150-00006
  14. Gurumurthy P, Ramachandran G, Kumar AKH, et al. Decreased bioavailability of rifampin and other antituberculosis drugs in patients with advanced human ummunodeficiency virus disease. Society. 2004;48(11):4473-4475. https://doi.org/10.1128/AAC.48.11.4473
  15. Sahai J, Gallicano K, Oliveras L, Khaliq S, Hawley-Foss N. Cations in the didanosine tablet reduce ciprofloxacin bioavailability. Clin Pharmacol Ther. 1993;53(3):292-297.
  16. Van Oosterhout JJ, Dzinjalamala FK, Dimba A, et al. Pharmacokinetics of antituberculosis drugs in HIV-positive and HIV-negative adults in Malawi. Antimicrob Agents Chemother. 2015;59(10):6175-6180. https://doi.org/10.1128/AAC.01193-15
  17. Корецкая Н.М., Большакова И.А. Биологические свойства микобактерий у ВИЧ-негативных и ВИЧ-позитивных лиц с диссеминированным туберкулезом легких. Сибирское медицинское обозрение. 2012;4:62-66.
  18. WHO. Multidrug and Extensively Drug-Resistant TB (M/XDR-TB): 2010 Global Report on Surveillance and Response.; 2010. Accessed May 31, 2017. Available at: http://www.who.int/tb/features_archive/m_xdrtb_facts/en/
  19. Conaty SJ, Hayward AC, Story A, Glynn JR, Drobinewski FA, Watson JM. Explaining risk factors for drug-resistant tuberculosis in England and Wales: contribution of primary and secondary drug resistance. Epidemiol Infect. 2004;132(6):1099-1108. https://doi.org/10.1017/S0950268804002869
  20. ЦНИИ ОИЗ. Эпидемическая ситуация по туберкулезу в России. Ссылка активна на 31.05.2017. Доступно по: http://mednet.ru/ru/czentr-monitoringa-tuberkuleza.html
  21. Пантелеев А.М. Патогенез, клиника, диагностика и лечение туберкулеза у больных ВИЧ-инфекцией: диссертация на соискание степени доктора медицинских наук. Санкт-Петербург, 2012. Ссылка активна на 31.05.2017. http://www.dissercat.com/content/patogenez-klinika-diagnostika-i-lechenie-tuberkuleza-u-bolnykh-vich-infektsiei
  22. Khanin A, Viktorova I, Kononchuk O. Primary drug resistance in HIV/tuberculosis patients in two large cities of Siberia. Eur Respir J. 2016;48(suppl.60). Accessed May 31, 2017. Available at: http://erj.ersjournals.com/content/48/suppl_60/PA2765
  23. Покровский В.В., Ладная Н.Н., Буравцова Е.В. Сирица А.В. ВИЧ-инфекция: информ. бюл. №41. 2016:55.
  24. Falzon D, Gandhi N, Migliori GB, et al. Resistance to fluoroquinolones and second-line injectable drugs: impact on multidrug-resistant TB outcomes. Eur Respir J. 2013;42(1):156-168. https://doi.org/10.1183/09031936.00134712
  25. Ahmad S, Mokaddas E, Al-Mutairi N, Eldeen HS, Mohammadi S. Discordance across phenotypic and molecular methods for drug susceptibility testing of drug-resistant Mycobacterium tuberculosis isolates in a low TB incidence country. PLoS One. 2016;11(4):1-16. https://doi.org/10.1371/journal.pone.0153563
  26. Banu S, Rahman SMM, Khan MSR, et al. Discordance across several methods for drug susceptibility testing of drug-resistant mycobacterium tuberculosis isolates in a single laboratory. J Clin Microbiol. 2014;52(1):156-163. https://doi.org/10.1128/JCM.02378-13
  27. Yakrus MA, Driscoll J, Lentz AJ, et al. Concordance between molecular and phenotypic testing of mycobacterium tuberculosis complex isolates for resistance to rifampin and isoniazid in the United States. J Clin Microbiol. 2014;52(6):1932-1937. https://doi.org/10.1128/JCM.00417-14
  28. Van Deun A, Barrera L, Bastian I, et al. Mycobacterium tuberculosis strains with highly discordant rifampin susceptibility test results. J Clin Microbiol. 2009;47(11):3501-3506. https://doi.org/10.1128/JCM.01209-09

Copyright (c) 2017 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies