Numbers of early CD34+ progenitors of bone marrow hematopoiesis in patients with diffuse large B-cell lymphoma


Cite item

Full Text

Abstract

Aim. To estimate the number of early progenitors of bone marrow (BM) hematopoiesis in patients with diffuse large B-cell lymphoma (DLBCL) in the late period after high-dose chemotherapy (HDCT) according to the mNHL-BFM-90 program. Subjects and methods. The investigators analyzed the results of BM immunophenotypic and histological studies in 40 patients (median age, 57 years) with DLBCL who received HDCT according to the mNHL-BFM-90 program at the Hematology Research Center (HRC), Ministry of Health of the Russian Federation (MHRF), in the period 2002 to 2009. A comparison group consisted of 19 patients (median age, 70 years) treated according to the CHOP/R-CHOP program at HRC, MHRF, in the same period. The median follow-up period was 6 years. The results of BM examination were analyzed before and 5—10 years after the end of HDCT. Immunophenotypic study determined the number of early CD34+ hematopoietic progenitors. BM cellularity, the size of erythroid, granulocytic and megakaryocytic lineages, their ratio, the presence of dysplasia signs, and secondary stromal changes were histologically determined. The BM toxic injury signs found for the first time were evaluated as manifestations of late myelotoxicity. Results. At 5-to-10-year follow-ups after the end of HDCT according to the mNHL-BFM-90 program, the patients showed a smaller number of early CD34+ progenitors of BM hematopoiesis in 31 (78%) cases than those treated according to the CHOP/R-CHOP-21 program (n=8 (2%)) (p=0.005). Myelopoiesis with decreased CD34+ cell count was characterized by hypocellularity in 8 (26%) patients (p=0.07), the narrowing of megakaryocytic lineage in 14 (45%) (p=0.006), erythroid one in 7 (23%) (p=0.01), and granulocytic one in 8 (26%) (p=0.92), pronounced secondary stromal changes in 15 (48%) (p=0.03), and grade 1 thrombocytopenia in 13 (42%); p=0.02). Conclusion. There is evidence that the number of early CD34+ progenitors of BM hematopoiesis decreased in patients with DLBCL in the late period after HDCT. The investigation shows the relationship of the reduction in the number of early CD34+ progenitors of BM hematopoiesis in the late follow-up period to the presence of pronounced secondary changes in the BM stroma (p=0.02). There was no statistically significant relationship of the decreased number of CD34+ cells to the age younger or older than 60 years, to the period after the end of chemotherapy, to gender or presence of specific BM injury.

About the authors

E I Dorokhina

Гематологический научный центр Минздрава России

Москва, Россия

A U Magomedova

Гематологический научный центр Минздрава России

Москва, Россия

I V Galtseva

Гематологический научный центр Минздрава России

Москва, Россия

V N Dvirnyk

Гематологический научный центр Минздрава России

Москва, Россия

S A Glinkina

Гематологический научный центр Минздрава России

Москва, Россия

S M Kulikov

Гематологический научный центр Минздрава России

Москва, Россия

S K Kravchenko

Гематологический научный центр Минздрава России

Москва, Россия

References

  1. Магомедова А.У., Кравченко С.К., Кременецкая А.М., Звонков Е.А., Барях Е.А., Мангасарова Я.К., Воробьев А.И. Девятилетний опыт лечения больных диффузной В-крупно-клеточной лимфосаркомой. Тер. архив. 2011;7:5-10.
  2. Магомедова А.У. Диффузная В-крупноклеточная лимфосаркома лимфоидных органов: клинические формы и лечение: Дис. д-ра мед. наук. М.; 2008.
  3. Coiffier B, Thieblemont C, Van Den Neste E, Lepeu G, Plantier I, Castaigne S, Lefort S, Marit G, Macro M, Sebban C, Belhadj K, Bordessoule D, Fermé C, Tilly H. Long-term outcome of patients in the LNH-98.5 trial, the first randomized study comparing rituximab-CHOP to standard CHOP chemotherapy in DLBCL patients: a study by the Groupe d’Etudes des Lymphomes de l’Adulte. Blood. 2010;116(12):2040-2045. doi: 10.1182/blood-2010-03-276246
  4. Pfreundschuh M, Kuhnt E, Trumper L et al. CHOP-like chemotherapy with or without rituximab in young patients with good-prognosis diffuse large-B-cell lymphoma: 6-year results of an open-label randomised study of the MabThera International Trial (MInT) Group. Lancet Oncol. 2011;12:1013-1022. doi: 10.1016/s1470-2045(11)70235-2
  5. Récher C, Coiffier B, Haioun C, Molina T, Fermé C, Casasnovas O, Thiéblemont C, Bosly A, Laurent G, Morschhauser F, Ghesquières H, Jardin F, Bologna S, Fruchart C, Corront B, Gabarre J, Bonnet C, Janvier M, Canioni D, Jais J, Salles G, Tilly H. Intensified chemotherapy with ACVBP plus rituximab versus standard CHOP plus rituximab for the treatment of diffuse large B-cell lymphoma (LNH03-2B): an open-label randomised phase 3 trial. Lancet. 2011;378:1858-1867. doi: 10.1016/s0140-6736 (11)61040-4
  6. Neben S, Hellman S, Montgomery M, Ferrara J, Mauch P, Hemman S. Hematopoietic stem cell deficit of transplanted bone marrow previously exposed to cytotoxic agents. Exp Hematol. 1993;21(1):156-162.
  7. To LB, Haylock DN, Simmons PJ, Juttner CA. The biology and clinical uses of blood stem cells. Blood. 1997;89(7):2233-2258.
  8. Gordon MY. Physiology and function of the haemopoietic microenvironment. Br J Haematol. 1994;86(2):241-243.
  9. Hays K. Physiology of normal bone marrow. Semin Oncol Nurs. 1990;6(1):3-8.
  10. Parchment RE, Gordon M, Grieshaber CK, et al. Predicting hematological toxicity (myelosuppression) of cytotoxic drug therapy from in vitro tests. Ann Oncol. 1998;9(4):357-364.
  11. Smith C. Hematopoietic stem cells and hematopoiesis. Cancer Control. 2003;10(1):9-16.
  12. Travlos GS. Normal structure, function, and histology of the bone marrow. Toxicol Pathol. 2006;34 (5):548-565.132. doi: 10.1080/01926230600939856
  13. Snoeck HW. Aging of the hematopoietic system. Curr Opin Hematol. 2013;20(4):355-361. doi: 10.1097/moh.0b013e3283623c77
  14. Fliedner TM, Graessle D, Paulsen C, Reimers K. Structure and function of bone marrow hemopoiesis: mechanisms of response to ionizing radiation exposure. Cancer Biother Radiopharm. 2002; 17(4):405-426. doi: 10.1089/108497802760363204
  15. Shen Y, Nilsson SK. Bone, microenvironment and hematopoiesis. Curr Opin Hematol. 2012;19(4):250-255. doi: 10.1097/moh.0b013e328353c714
  16. Gale R. Antineoplastic chemotherapy myelosuppression: Mechanisms and new approaches (Keynote address). Exp Hematol. 1985;13:3-7.
  17. O´Flaherty E, Sparrow R, Szer J. Bone marrow stromal function from patients after bone marrow transplantation. Bone Marrow Transplant. 1995;15:207-212.
  18. Minderman H, Linssen P, van der Lely N, Wessels J, Boezeman J, de Witte T, Haanen C. Toxicity of idarubicin and doxorubicin towards normal and leukemic human bone marrow progenitors in relation to their proliferative state. Leukemia. 1994;8(3):382-387.
  19. Schein PS, Winokur SH. Immunosuppressive and cytotoxic chemotherapy: long-term complications. Ann Intern Med. 1975;82(1):84-95.
  20. Trainor KJ, Seshadri RS, Morley AA. Residual marrow injury following cytotoxic drugs. Leuk Res. 1979;3(4):205-210.
  21. Lohrmann HP. The problem of permanent bone marrow damage after cytotoxic drug treatment. Oncology. 1984;41(3):180-184.
  22. Brooimans RA, Kraan J, Putten W, Cornelissen JJ, Lo¨wenberg B, and Gratama1 JW. Flow Cytometric Differential of Leukocyte Populations in Normal Bone Marrow: Influence of Peripheral Blood Contamination. Cytometry Part B (Clinical Cytometry). 2009;76B:18-26. doi: 10.1002/cyto.b.20439
  23. Ширин А.Д., Френкель М.А. Современная диагностика миелодиспластических синдромов взрослых. Клиническая онкогематология. Фундаментальные исследования и клиническая практика. 2010;3(3).

Copyright (c) 2017 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies