Role of vascular remodeling markers in the development of osteoporosis in idiopathic pulmonary arterial hypertension


如何引用文章

全文:

详细

Aim. To define the role of circulating biomarkers for the metabolism of collagen and intercellular substance and vascular remodeling in the development of osteoporosis (OP) in idiopathic pulmonary arterial hypertension (IPAH). Materials and methods. Functional hemodynamic parameters, bone mineral density (BMD) in the lumbar spine and femoral neck and the serum levels of matrix metalloproteinase-9 (MMP-9), tissue inhibitor of metalloproteinase-1 (TIMP-1), MMP-9/TIMP-1 complex, C-terminal telopeptide of collagen type 1 (CITP), and endothelin-1 (ET-1) were determined in 27 high-risk IPAH patients and 30 healthy volunteers. Results. OP in IPAH was detected in 50% of the examinees. The serum levels of CITP, MMP-9, TIMP-1, and ET-1 proved to be higher in the high-risk IPAH patients than in the healthy volunteers. There was a direct correlation between BMD and six-minute walk test and an inverse correlation with total pulmonary vascular resistance (TPVR). Serum TMIP-1 levels correlated with cardiac index and TPVR; ET-1 concentrations were directly related to pulmonary artery systolic pressure, cardiac index, and TPVR. Inverse relationships were found between BMD and circulating CITP, MMP-9, TMIP-1, MMP-9/TMIP-1, and ET-1. At the same time, there was only a tendency towards a positive correlation between serum CITP and ET-1 concentrations. Conclusion. The results of the investigation confirm that endothelin system dysregulation plays a leading role in the development of persistent hemodynamic disorders in high-risk IPAH and suggest that it is involved in the development of osteopenic syndrome. Enhanced ET-1 secretion initiates bone loss possibly via activation of connective tissue matrix destruction.

作者简介

V Nevzorova

Тихоокеанский государственный медицинский университет Минздрава России

Владивосток, Россия

E Kochetkova

Тихоокеанский государственный медицинский университет Минздрава России

Владивосток, Россия

L Ugay

Тихоокеанский государственный медицинский университет Минздрава России

Владивосток, Россия

Yu Maistrovskaya

Тихоокеанский государственный медицинский университет Минздрава России

Владивосток, Россия

E Khludeeva

Тихоокеанский государственный медицинский университет Минздрава России

Владивосток, Россия

参考

  1. Wang TK, O’Sullivan S, Gamble GD, Ruygrok PN. Bone density in heart or lung transplant recipients — a longitudinal study. Transplant Proc. 2013;45(6):2357-2365. doi: 10.1016/j.transproceed.2012.09.117
  2. Global Initiative for Chronic Obstructive Lung Disease (updated 2016).http://www.goldcopd.org/uploads/users/files/WatermarkedGlobal_20Strategy_202016(1).pdf
  3. GINA Report, Global Strategy for Asthma Management and Prevention. http://ginasthma.org/gina-report-global-strategy-for-asthma-management-and-prevention/
  4. Bon JM, Zhang Y, Duncan SR, Pilewski JM, Zaldonis D, Zeevi A, McCurry KR, Greenspan SL, Sciurba FC. Plasma inflammatory mediators associated with bone metabolism in COPD. COPD. 2010;7:186-191. doi: 10.3109/15412555.2010.482114
  5. Vrieze A, de Greef MH, Wijkstra PJ, Wempe JB. Low bone mineral density in COPD patients related to worse lung function, low weight and decreased fat-free mass. Osteoporos Int. 2007;18(9):1197-1202.
  6. Franco CB, Paz-Filho G, Gomes PE, Nascimento VB, Kulak CA, Boguszewski CL, Borba VZ. Chronic obstructive pulmonary disease is associated with osteoporosis and low levels of vitamin D. Osteoporos Int. 2009;20:1881-1887. doi: 10.1007/s00198-009-0890-5
  7. Katsura H, Kida K. A comparison of bone mineral density in elderly female patients with COPD and bronchial asthma. Chest. 2002;122:1949-1955.
  8. Мартынюк Т.В., Чазова И.Е. Новые возможности в стратегии лечения больных с идиопатической легочной гипертензией: антагонист рецепторов эндотелина бозентан. Системные гипертензии. 2008;4:25-36. http://www.gipertonik.ru/files/journals/SG4(2008).pdf
  9. Galiè N, Humbert M, Vachiery JL, Gibbs S, Lang I et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Heart J. 2016;37(1):67-119. doi: 10.1093/eurheartj/ehv317
  10. Tschopp O, Schmid C, Speich R, Seifert B, Russi EW, Boehler A. Pretransplantation bone disease in patients with primary pulmonary hypertension. Chest. 2006;129:1002-1008.
  11. Malik N, McCarthy K, Minai OA. Prevalence and significance of decreased bone density in pulmonary arterial hypertension. South Med J. 2012;105(7):344-349. doi: 10.1097/SMJ.0b013e31825b8117
  12. Peled N, Shitrit D, Fox BD, Shlomi D, Amital A, Bendayan D, Kramer MR. Peripheral arterial stiffness and endothelial dysfunction in idiopathic and scleroderma associated pulmonary arterial hypertension. J Rheumatol. 2009;36(5):970-975. doi: 10.3899/jrheum.081088
  13. Safdar Z, Tamez E, Frost A, Guffey D, Minard CG, Entman ML. Collagen Metabolism Biomarkers and Health Related Quality of Life in Pulmonary Arterial Hypertension. Int J Cardiovasc Res. 2015;4(2). doi: 10.4172/2324-8602.1000198
  14. Alangiakrishman K, Juby A, Hanley D, Tymchak W, Sclater A. Role of vascular factors in osteoporosis. J Gerontol: Med Scie. 2003;58(4):362-366.
  15. Sumino H, Ichikawa S, Kasama S et al. Relationship between brachial arterial endothelial function and lumbar spine bone mineral density in postmenopausal women. Circulation J. 2007;71(10):1555-1559. doi: 10.1253/circj.71.1555
  16. Prasad M, Reriani M, Khosla S, Gössl M, Lennon R, Gulati R, Prasad A, Lerman LO, Lerman A. Coronary microvascular endothelial dysfunction is an independent predictor of development of osteoporosis in postmenopausal women. Vasc Health Risk Manag. 2014;10:533-538. doi: 10.2147/VHRM.S63580
  17. Delgado-Frías E, López-Mejias R, Genre F, Ubilla B, Gómez Rodríguez-Bethencourt MA, González-Díaz A, de Vera-González AM, González-Rivero AF, Díaz-González F, González-Gay MA, Ferraz-Amaro I. Relationship between endothelial dysfunction and osteoprotegerin, vitamin D, and bone mineral density in patients with rheumatoid arthritis. Clin Exp Rheumatol. 2015;33(2):241-249.
  18. Madonna R, Novo G, Balistreri CR. Cellular and molecular basis of the imbalance between vascular damage and repair in aging and age-related diseases: As biomarkers and targets for new treatments. Mech Ageing Dev. 2016 Mar 15. pii: S0047-6374(16)30026-4. doi: 10.1016/j.mad.2016.03.005
  19. Clarkin CE, Gerstenfeld LC. VEGF and bone cell signalling: an essential vessel for communication? Cell Biochem Funct. 2013;31(1):1-11. doi: 10.1002/cbf.2911
  20. Wang XM, Shi K, Li JJ, Chen TT, Guo YH, Liu YL, Yang YF, Yang S. Effects of angiotensin II intervention on MMP-2, MMP-9, TIMP-1, and collagen expression in rats with pulmonary hypertension. Genet Mol Res. 2015;14(1):1707-1717. doi: 10.4238/2015.March.6.17
  21. Pardo A, Cabrera S, Maldonado M, Selman M. Role of matrix metalloproteinases in the pathogenesis of idiopathic pulmonary fibrosis. Respir Res. 2016;17(1):23. doi: 10.1186/s12931-016-0343-6
  22. Schumann C, Lepper PM, Frank H, Schneiderbauer R, Wibmer T, Kropf C, Stoiber KM, Rüdiger S, Kruska L, Krahn T, Kramer F. Circulating biomarkers of tissue remodelling in pulmonary hypertension. Biomarkers. 2010;15(6):523-532. doi: 10.3109/1354750X.2010.492431
  23. Jiang L, Zhou T, Liu H. Combined effects of the ATP-sensitive potassium channel opener pinacidil and simvastatin on pulmonary vascular remodeling in rats with monocrotaline-induced pulmonary arterial hypertension. Pharmazie. 2012;67(6):547-552.
  24. Невзорова В.А., Тилик Т.В., Гилифанов Е.А., Панченко Е.А., Вахрушева С.Е., Тилик В.В. Роль матриксных металлопротеиназ в формировании морфофункционального дисбаланса воздухоносных путей при хронической обструктивной болезни легких. Тихоокеанский медицинский журнал. 2011;2:9-13. Доступно по: http://www.tmj-vgmu.ru/files/old/PMJ_2009-2011/1509.pdf
  25. Bergers G, Brekken R, McMahon G, Vu TH, Itoh T, Tamaki K, Tanzawa K, Thorpe P, Itohara S, Werb Z, Hanahan D. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol. 2000;2(10):737-744.
  26. Anderson TL, del Carem Ovejero M, Kirkegaard T et al. A scrutiny of matrix metalloproteinases in osteoclasts: evidence for heterogeneity and for the presence of MMPs synthesized by other cells. Bone. 2004;35:1107-1119.
  27. Li Y, Zhang Zh, Xu Yo et al. TNF-α Up-regulates Matrix Metalloproteinase-9 Expression and Activity in Alveolar Macrophages from Patients with Chronic Obstructive Pulmonary Disease. J Huazhong University of Science and Technology 2006;26(6):647-650. doi:10.1007/s 11596-006-0604-6
  28. Song H, Cheng Y, Bi G, Zhu Y, Jun W, Ma W, Wu H. Release of Matrix Metalloproteinases-2 and 9 by S-Nitrosylated Caveolin-1 Contributes to Degradation of Extracellular Matrix in tPA-Treated Hypoxic Endothelial Cells. PLoS One. 2016;11(2):e0149269. doi: 10.1371/journal.pone.0149269
  29. Safdar Z, Tamez E, Chan W, Arya B, Ge Y, Deswal A, Bozkurt B, Frost A, Entman M. Circulating collagen biomarkers as indicators of disease severity in pulmonary arterial hypertension. JACC Heart Fail. 2014;2(4):412-421. doi: 10.1016/j.jchf.2014.03.013
  30. Benza RL, Gomberg-Maitland M, Demarco T, Frost AE, Torbicki A, Langleben D, Pulido T, Correa-Jaque P, Passineau MJ, Wiener HW, Tamari M, Hirota T, Kubo M, Tiwari HK. Endothelin-1 Pathway Polymorphisms and Outcomes in Pulmonary Arterial Hypertension. Am J Respir Crit Care Med. 2015;192(11):1345-1354. doi: 10.1164/rccm.201501-0196OC
  31. Serizawa K, Yogo K, Tashiro Y, Takeda S, Kawasaki R, Aizawa K, Endo K. Eldecalcitol prevents endothelial dysfunction in postmenopausal osteoporosis model rats. J Endocrinol. 2016;228(2):75-84. doi: 10.1530/JOE-15-0332
  32. Mestek ML, Weil BR, Greiner JJ, Westby CM, DeSouza CA, Stauffer BL. Osteopenia and endothelin-1-mediated vasconstrictor tone in postmenopausal women. Bone. 2010;47(3):542-545. doi: 10.1016/j.bone.2010.05.041

补充文件

附件文件
动作
1. JATS XML

版权所有 © Consilium Medicum, 2016

Creative Commons License
此作品已接受知识共享署名-非商业性使用-相同方式共享 4.0国际许可协议的许可。
 
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».