Evaluation of the efficacy and tolerance of ibandronic acid in patients with osteoarthrosis in the knee joints concurrent with osteoporosis: A pilot study


Cite item

Full Text

Abstract

AIM: To evaluate the efficacy and tolerance of ibandronic acid (bonviva) in patients with osteoporosis (OP) concurrent with osteoarthrosis (OA) in the knee joints (KJ)/MATERIAL AND METHODS: Twenty female outpatients aged 56 to 77 years with postmonopausal OP and primary KJ OA were examined. All the patients took bonviva in a dose of 150 mg monthly during a year/RESULTS: During the treatment, the patients showed a significant reduction in the values of all components of the Western Ontario and McMasters Universities Osteoarthritis Index (WOMAC) (pain intensity from 51.7±11.6 to 34.6±20.7 mm, stiffness from 96.0±55.6 to 78.5±46.6 mm, and functional failure from 783.6±333.2 to 657.8±360.9 mm according to a visual analogue scale), the Oswestry disability index, as well as in the concentration of markers for bone resorption and cartilage degradation. The need for nonsteroidal anti-inflammatory drugs was stated to decrease/CONCLUSION: Bonviva therapy results in a significant reduction in pain, KJ stiffness, and locomotor functional failure in patients with gonoarthrosis.

About the authors

L I Alekseeva

НИИ ревматологии РАМН, Москва

Email: alekseeva@irramn.ru

E M Zaĭtseva

НИИ ревматологии РАМН, Москва

E P Sharapova

НИИ ревматологии РАМН, Москва

E A Taskina

НИИ ревматологии РАМН, Москва

A V Smirnov

НИИ ревматологии РАМН, Москва

N V Demin

НИИ ревматологии РАМН, Москва

E N Aleksandrova

НИИ ревматологии РАМН, Москва

A A Novikov

НИИ ревматологии РАМН, Москва

References

  1. Dixon T., Shaw M., Ebrahim S., Dieppe P. Trends in hip and knee joint replacement: socioeconomic inequalities and projections of need. Ann Rheum Dis 2004; 63: 825-830.
  2. Buckland-Wright С., Macfarlane D., Jasani M.K., Lynch J. Quantitative microfocal radiographic assessment of osteoarthritis of the knee from weight bearing tunnel and semiflexed standing views. J Rheumatol 1994; 21: 1734-1741.
  3. Buckland-Wright C. Lynch J., Macfarlane D. Fractal signature analysis measures cancellous bone organisation in macroradiographs of patients with knee osteoarthritis. Ann Rheum Dis 1996; 55: 748-755.
  4. Billingham M.E.J., Meijers M.H.M., Mahwinney B., Malcolm A. Spontaneous osteoarthritis in guinea pigs: cartilage degeneration is preceded by loss of subchondral trabecular bone [abstract]. J Rheum 1996; Suppl 1: 104.
  5. Hutton C.W., Higgs E.R., Jackson P.C. et al. 99mTc HMDP bone scanning in generalised arthritis. I. Comparison of the standard radiograph and four hour bone scan image of the hand. Ann Rheum Dis 1986; 45: 617-621.
  6. Hutton C.W., Higgs E.R., Jackson P.C. et al. 99mTc HMDP bone scanning in generalised arthritis. II. The four hour bone scan image predicts radiographic change. Ann Rheum Dis 1986; 45: 622-626.
  7. Dieppe P., Cushnaghan J., Young P., Kirwan J. Prediction of the progression of joint space narrowing in osteoarthritis of the knee by bone scintigraphy. Ann Rheum Dis 1993; 52: 557-563.
  8. Messner K., Fahlgren A., Ross I., Andersson B. Simultaneous changes in bone mineral dencity and articular cartilage in a rabbit meniscetomy model of knee oateoarthrosis. Osteoarthritis Cartilage 2000; 8: 197-206.
  9. Pastoureau P.C., Chomel A.C., Bonnet J. Evidence of early subchondral bone scanges in the menisectomized guinea pig: a densitometric study using dual X-ray absorptijmetry subregional analysis. Osteoarthritis Cartilage 1999;7: 466-473.
  10. Karvonen R.L., Miller P.R., Nelson D.A. et al. Periarticular osteoporosis in osteoarthritis of the knee. J Rheumatol 1998; 25 (11): 2187-2194.
  11. Li B., Marshall D., Roe M., Aspden R.M. The electron microscope appearance of the subchondral bone plate in the human femoral head in osteoarthritis and osteoporosis. J Anat 1999; 195 (Pt 1): 101-110.
  12. Hunter D.J., Spector T.D. The role of bone metabolism in osteoarthritis. Curr Rheumatol Rep 2003; 5 (1): 15-19.
  13. Lajeunesse D. The role of bone in treatment of osteoarthritis. Osteoarthritis Cartilage 2004; 12: S34-38.
  14. Bailey A.J., Sims T.J., Knott L. Phenotypic expression of osteoblast collagen in osteoarthritic bone: production of type I homotrimer. Int J Biochem Cell Biol 2002; 34: 176-182.
  15. Misof K., Landis W.J., Klaushofer K. et al. Cjllagen from the osteogenesis imperfecta mouse model (oim) shows redused resistance against tensile stress. J Clin Invest 1997; 100: 40-45.
  16. Bobinac D., Spanjol J., Zoricic S., Maric I. Changes in articular cartilage and subchondral bone histomorphometry in osteoarthritic knee joints in humans. Bone 2003; 32 (3): 284-290.
  17. Catterall J.B., Cawston T.E. Drugs in development: bisphosphonates and metalloproteinase inhibitors. Arthritis Res Ther 2003; 5: 12-24.
  18. Ammann P., Rizzoli R., Caverzasio J. et al. Effects of the bisphosphonate tiludronate on bone-resorption, calcium balance, and bone-mineral density. J Bone Miner Res 1993; 8: 1491-1498.
  19. Balena R., Toolan B.C., Shea M. et al. The effects of 2-year treatment with the aminobisphosphonate alendronate on bone metabolism, bone histomorphometry, and bone strength in ovariectomized nonhuman-primates. J Clin Invest 1993; 92: 2577-2586.
  20. Toolan B.C., Shea M., Myers E.R. et al. Effects of 4-amino-1-hydroxybutylidene bisphosphonate on bone biomechanics in rats. J Bone Miner Res 1992; 7: 1399-1406.
  21. Nakaya H., Osawa G., Iwasaki N. et al. Effects of bisphosphonate on matrix metalloproteinase enzymes in human periodontal ligament cells. J Periodontol 2000; 71: 1158-1166.
  22. Hayami T., Pickarski M., Wesolowski G.A. et al. The role of subchondral bone remodeling in osteoarthritis: reduction of cartilage degeneration and prevention of osteophyte formation by alendronate in the rat anterior cruciate ligament transection model. Arthritis Rheum 2004; 50 (4): 1193-1206.
  23. Corrado A., Santoro N., Cantatore F.P. Extra-skeletal effects of bisphosphonates. Joint Bone Spine 2007; 74 (1): 32-38.
  24. Muehleman C., Green J., Williams J.M. et al. The effect of bone remodeling inhibition by zoledronic acid in an animal model of cartilage matrix damage. Osteoarthritis Cartilage 2002; 10 (3): 226-233.
  25. Shirai T., Kobayashi M., Nishitani K. et al. Chondroprotective effect of alendronate in a rabbit model of osteoarthritis. J Orthop Res 2011; 29 (10): 1572-1577.
  26. Spector T.D., Conaghan P.G., Buckland-Wright J.C. et al. Effect of risedronate on joint structure and symptoms of knee osteoarthritis: results of the BRISK randomized, controlled trial. Arthritis Res Ther 2005; 7: R625-R633.
  27. Neogi T., Nevitt M.C., Ensrud K.E. et al. The effect of alendronate on progression of spinal osteophytes and disc space narrowing. Ann Rheum Dis published online 14 Feb 2008; doi: 10.1136/ard.2007.085563
  28. Lee Y.H., Song G.G. Efficacy and Safety of Monthly 150 mg Oral Ibandronate in Women with Postmenopausal Osteoporosis: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Korean J Intern Med 2011; 26 (3): 340-347.
  29. Chung Y.-S., Lim S.-K., Chung H.-Y. et al. Comparison of monthly ibandronate versus weekly risedronate in preference, convenience, and bone turnover markers in korean postmenopausal osteoporotic women. Calcif Tissue Int 2009; 85 (5): 389-397.
  30. Li M., Xing X.P., Zhang Z.L. Infusion of ibandronate once every 3 months effectively decreases bone resorption markers and increases bone mineral density in Chinese postmenopausal osteoporotic women: a 1-year study. J Bone Miner Metab 2010; 28 (3): 299-305.
  31. Recker R.R., Ste-Marie L.G., Langdahl B. et al. Effects of intermittent intravenous ibandronate injections on bone quality and micro-architecture in women with postmenopausal osteoporosis: the DIVA study. Bone 2010; 46 (3): 660-665.
  32. Hulet C., Sabatier J.P., Schiltz D. et al. Dual x ray absorptiometry assessment of bone density of the proximal tibia in advanced-stage degenerative disease of the knee. Rev Chir Orthop Reparatrice Appar Mot 2001; 87 (1): 50-60.
  33. Murphy E., Bresnihan B., Fitzgerald O. Validated measurement of periarticular bone mineral density at the knee joint by dual energy x-ray absorptiometry. Ann Rheum Dis 2001; 60: 8-13.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2013 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».