MULTISLICE COMPUTED TOMOANGIOGRAPHY IN ASSESSMENT OF CORONARY STENT LUMEN


Cite item

Full Text

Abstract

The treatment of coronary artery stenosis has progressively shifted over the past decades from surgical (bypasses) to percutaneous (stenting). Recent introduction of drug-eluting stents further reduced the occurrence of in-stent re-stenosis (ISR). However, a non-negligible number of patients need imaging tests when symptoms recur. Multi-Slice computed Coronary Angiography (CT-CA) is a clinical reality for evaluation of coronary artery stenosis, but still under evaluation in the follow-up of coronary stents. Several factors may impair proper depiction of in-stent lumen even with the most recent CT equipments. In highly selected populations CT-CA may play a clinical role even though the performance requirements both from the technical standpoint (i.e., CT scanner) and from the training (i.e., operators’ experience) are still very demanding. In the meantime CT technology should improve towards higher contrast, spatial and temporal resolution in order to achieve the results that may be proper for clinical implementation.

About the authors

IM Mikhaylovna Arkhipova

Therapeutic and Rehabilitation Center

Email: iarkhipova@mail.ru
врач-рентгенолог

V E Sinitsyn

Therapeutic and Rehabilitation Center

д-р мед. наук, проф., рукю Центр лучевой диагностики

References

  1. Shinbane M. J. B. Cardiac CT imaging diagnosis of cardiovascular diseae. Matthew J. S. S., Budoff J., Achenbach S. et al., eds. London: Springer-Verlag London Limited; 2006. 140—143.
  2. Mohlenkamp S. et al. Minimally invasive evaluation of coronary stents with electron beam computed tomography: In vivo and in vitro experience. Catheter. Cardiovasc. Interv. 1999; 48 (1): 39—47.
  3. Lu B. et al. Detection and analysis of intracoronary artery stent after PTCA using contrast-enhanced three-dimensional electron beam tomography. J. Invasive Cardiol. 2000; 12 (1): 1—6.
  4. Maintz D. et al. Assessment of coronary arterial stents by multislice-CT angiography. Acta Radiol. 2003; 44 (6): 597—603.
  5. Maintz D. et al. Imaging of coronary arterial stents using multislice computed tomography: in vitro evaluation. Eur. Radiol. 2003; 13 (4): 830—835.
  6. Schuijf J. D. et al. Coronary stent imaging with multidetector row computed tomography. Int. J. Cardiovasc. Imag. 2004; 20 (4): 341—344.
  7. Schuijf J. D. et al. Feasibility of assessment of coronary stent patency using 16-slice computed tomography. Am. J. Cardiol. 2004; 94 (4): 427—430.
  8. Gilard M. et al. Assessment of coronary artery stents by 16 slice computed tomography. Heart 2006; 92 (1): 58—61.
  9. Cademartiri F. et al. Non-invasive assessment of coronary artery stent patency with multislice CT: preliminary experience. Radiol. Med. 2005; 109 (5—6): 500—507.
  10. Cademartiri F. et al. Diagnosis accuracy of 64-lice CT e assessment of coronary stents. Radiol. Med. 2007; 112 (4): 526—537.
  11. Cademartiri F. et al. Usefulness of 64-slice multislice computed tomography coronary angiography to assess in-stent restenosis. J. Am. Coll. Cardiol. 2007; 49 (22): 2204—2210.
  12. Soon K. H. et al. Non-invasive computed tomography angiography in the assessment of coronary stent patency: an Australian experience. Intern. Med. J. 2007; 37 (6): 360—364.
  13. Schuijf J. D. et al. Evaluation of patients with previous coronary stent implantation with 64-section CT. Radiology 2007; 245 (2): 416—423.
  14. Gaspar T. et al. Diagnosis of coronary in-stent restenosis with multidetector row spiral computed tomography. J. Am. Coll. Cardiol. 2005; 46 (8): 1573—1579.
  15. Mahnken A. H. et al. 64-slice computed tomography assessment of coronary artery stents: a phantom study. Acta Radiol. 2006; 47 (1): 36—42.
  16. Martuscelli E. et al. In-stent restenosis and multislice computed tomography: is the method ready to start? J. Cardiovasc. Med. (Hagerstown) 2007; 8 (5): 377—380.
  17. Nakamura K. et al. Impairment factors for evaluating the patency of drug-eluting stents and bare metal stents in coronary arteries by 64-slice computed tomography versus conventional coronary angiography. Int. J Cardiol. 2008; 130 (3): 349—356.
  18. Das K. M. et al. Contrast-enhanced 64-section coronary multidetector CT angiography versus conventional coronary angiography for stent assessment. Radiology 2007; 245 (2): 424— 432.
  19. Sun Z., Davidson R., Lin C. H. Multi-detector row CT angiography in the assessment of coronary in-stent restenosis: systematic review. Eur. J. Radiol. 2009; 69 (3): 489—495.
  20. Haraldsdottir S., Gudnason T., Sigurdsson A. F. et al. Diagnostic accurary of 64-slice multidetector CT for detection of in-stent restenosis in an unselected, consecutive patient population. Eur. J. Radiol. 2010; 76: 188—194.
  21. Lell M. M. et al. Evaluation of coronary stents and stenoses at different heart rates with dual source spiral CT (DSCT). Invest. Radiol. 2007; 42 (7): 536—514.
  22. Oncel D. et al. Evaluation of coronary stent patency and in-stent restenosis with dual-source CT coronary angiography without heart rate control. Am. J. Roentgenol. 2008; 191 (1): 56—63.
  23. Pugliese F. et al. Dual source coronary computed tomography angiography for detecting in-stent restenosis. Heart 2008; 94 (7): 848—854.
  24. Maintz D. et al. 64-slice multidetector coronary CT angiography: in vitro evalution of 68 different stents. Eur. Radiol. 2006; 16 (4): 818—826.
  25. Maintz D. et al. Update on multidetector coronary CT angiography of coronary stents: in vitro evaluation of 29 different stent types with dual-source CT. Eur. Radiol. 2009; 19 (1): 42—49.
  26. Canan T., Lee M. S. Drug-eluting stent fracture: incidence, contributing factors, and clinical implications. Catheter. Cardiovasc. Interv. 2010; 75 (2): 237—245.
  27. Horiguchi J. et al. Prospective ECG-triggered axial CT at 140-kV tube voltage improves coronary in-stent restenosis visibility at a lower radiation dose compared with conventional retrospective ECG-gated helical CT. Eur. Radiol. 2009; 19: 2363—2372.
  28. Suzuki S. et al. Detection of in-stent restenosis of coronary stents using 40-detector row computed tomography in vitro. J. Comput. Assist. Tomogr. 2008; 32 (2): 252—258.
  29. Schlosser T. et al. In-vitro evaluation of coronary stents and 64-detector row computed tomography using a newly developed model of coronary artery stenosis. Acta Radiol. 2008; 49 (1): 56—64.
  30. Boll D. T. et al. Coronary stent patency: dual-energy multidetector CT assessment in a pilot study with anthropomorphic phantom. Radiology 2008; 247 (3): 687—695.
  31. Ohnuki K. et al. New diagnostic technique in multi-slice computed tomography for in-stent restenosis: pixel count method. Int. J. Cardiol. 2006; 108 (2): 251—258.
  32. Pugliese F. et al. Multidetector CT for visualization of coronary stents. Radiographies 2006; 26 (3): 887—904.
  33. Nieman K. The challenge of coronary stent imaging. J. Cardiovasc. Comput. Tomogr. 2010; 4 (1): 38—40.

Copyright (c) 2012 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies