Leukemic dendritic cells in patients with acute myeloid leukemia


如何引用文章

全文:

详细

Aim. To determine surface and intracellular expression of ACE antigen and Bip shaperon on leukemic dendritic cells (LDC); to study expression of ACE genes and Bip, Calnexin, calreticulin shaperons in LDC at diagnosis of acute myeloid leukemia (AML) under standard and stress cultivation.
Material and methods. Expression of ACE antigens and Bip was studied with immunophenotyping and flow cytometry using monoclonal antibodies to shaperon Bip and to CD143), expression of genes of ACE and shaperons Bip, Calnexin, Calreticulin - with polymerase chain reaction (RT-PCR). Dendritic cells (DC) were obtained by culturing of a monoclonal fraction of donor peripheral blood and AML patients in the presence of 180 ng/ml calcium ionophor A23187 (Sigma) for 4 days in parallel at 37°C and 33°C in the atmosphere of 5% CO2. The trial included 9 patients (5 males and 4 females) aged 39-53 years (median 43 years). The control group consisted of 8 healthy donors.
Results. Lowering of cultivation temperature did not increase ACE expression. Intracellular shaperon Bip rose insignificantly (1.3-fold) in DC of the controls. ACE and Bip shaperon expression on LDC membrane increased 15- and 11-fold, respectively, while the level of intracellular ACE and Bip decreased 11- and 2-fold, respectively. Expression of the genes was investigated in cultivation temperature lowering from 37 to 33°C and was presented as a logarithmic scale. Changes in expression of the genes Bip, Calnexin, Calreticulin in LDc and DC of the controls were insignificant. ACE expression in LDC significantly differed from ACE gene expression in DC (p = 0.05).
Conclusion. LCD and DC of healthy donors are cells which differ by genetic and functional characteristics. Therefore, LDC may response inadequately in development of antitumor immune response. The phenomenon of ACE antigen expression normalization on cell membrane in stress open new opportunities for regulating functional activity of LDC.

作者简介

Irina Gal'tseva

ГУ Гематологический научный центр РАМН

Email: irag@blood.ru
отд. химиотерапии гемобластозов и трансплантации костного мозга, с. н. с., к. м. н; ГУ Гематологический научный центр РАМН

Valeriy Savchenko

ГУ Гематологический научный центр РАМН

Email: svg@blood.ru
директор НИИ трансплантации костного мозга и молекулярной гематологии, руководитель отд. химиотерапии гемобластозов и трансплантации костного мозга ГНЦ, член-корр. РАМН, д. м. н; ГУ Гематологический научный центр РАМН

Andrey Sudarikov

ГУ Гематологический научный центр РАМН

Email: dusha@blood.ru
лаборатория молекулярной гематологии, зав. лабораторией, к. б. н., научный руководитель; ГУ Гематологический научный центр РАМН

Lev Pashin

ГУ Гематологический научный центр РАМН

Email: lenpge@gmail.com
отд. химиотерапии гемобластозов и ТКМ, аспирант; ГУ Гематологический научный центр РАМН

Elena Parovichnikova

ГУ Гематологический научный центр РАМН

Email: elenap@blood.ru
отд. химиотерапии гемобластозов и ТКМ, д. м. н., в. н. с; ГУ Гематологический научный центр РАМН

Sergey Danilov

ГУ Гематологический научный центр РАМНУниверситет штата Иллинойс

Email: danilov@uic.edu
к. б. н., научный сотрудник отделения анестезиологии; ГУ Гематологический научный центр РАМНУниверситет штата Иллинойс

I Galtseva

V Savchenko

A Sudarikov

L Pashin

E Parovichnikova

S Danilov

参考

  1. Campana D., Pui C. Detection of minimal residual disease in acute leukemia: methodolologic advances and clinical significans. Blood 1995; 85: 1416-1426.
  2. Steinman R. M., Cohn Z. A. Identification of a novel cell type in peripheral lymphoid organs of mice. Morphology, quantitation, tissue distribution. J. Exp. Med. 1973; 137 (5): 1142-1162.
  3. MacPherson G., Kushnir N., Wykes M. Dendritic cells, B cells and the regulation of antibody synthesis. Immunol. Rev. 1999; 172: 325-334.
  4. Gerosa F., Baldani-Guerra B., Nisii C. et al. Reciprocal activating interaction between natural killer cells and dendritic cells. J. Exp. Med. 2002; 195: 327-333.
  5. Sallusto F., Lanzavecchia A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J. Exp. Med. 1994; 179: 1109-1118.
  6. Grouard G., Rissoan M. C., Filgueira L. et al. Dendritic cells: multi-lineal and multi-functuinal. Nature 2003; 425: 1101- 1111.
  7. Rissoan M. C., Soumelis V., Kadowaki N. Reciprocal control of T helper cell and dendritic cell differentiation. Science 1999; 283: 1183-1190.
  8. Grabbe S., Murphy K. M., Reiner S. L. The lineage decisions of helper T cells. Nat. Rev. Immunol. 2002; 2: 933-943.
  9. Banchereau J., Steinman R. M. Dendritic cells and the control of immunity. Nature 1998; 392; 245-251.
  10. Rotheft T., Goschorek A., Barts H. et al. Antigen dose, type of antigen-presenting cell and time of differentiation contribute to the T helper 1/T helper 2 polarizationof naive T cell. Immunology 2003; 110: 430-439.
  11. Садовникова Е. Ю., Стрельникова Т. Б., Паровичникова Е. Н., Савченко В. Г. Индукция костимуляторных молекул на поверхности бластных клеток у больных острыми миелобластными лейкозами. Тер. арх. 2001; 7: 34-40.
  12. Robinson S. P., English N., Jaju R. et al. The in vitro generation of dendritic cells from blast cells in acute leukemia. Br. J. Haematol. 1998; 103: 763-771.
  13. Waclavicek M., Berer A., Oehler L. et al. Calcium ionophore: a single reagent for the differentiation of primary human acute myelogenous leukemia cells towards dendritic cells. Brt. J. Haematol. 2001; 114: 466-473.
  14. Cignetti A., Bryant E., Allione B. et al. CD34(+) acute myeloid and lymphoid leukemic blasts can be induced to differentiate into dendritic cells. Blood 1999; 94: 2048-2055.
  15. Charbonnier A., Gaugler B., Saity D. et al. Human acute myeloblastic leukemia cells differentiate in vitro into mature dendritic cells and induce the differentiation of cytotoxic T cells against autologous leukemias. Eur. J. Immunol. 1999; 29: 2567-2578.
  16. Савченко В. Г., Садовникова Е. Ю., Паравичникова Е. Н. и др. Индукция противоопухолевой активности T-лимфоцитов антиген-презентирующими клетками, полученными из бластных клеток у больных острыми лейкозами. Тер. арх. 2000; 7: 14-21.
  17. Sokolovsky M., Lodish H., Daley G. Control of hematopoietic differentiation: Lack of specificity in signaling by cytokine receptors. Proc. Natl. Acad. Sci. USA 1998; 95: 6573-6575.
  18. Maekawa T., Metcalf D. Clonal suppression of HL60 and U937 cells by recombinant human leukemia inhibitory factor in combination with GM-CSF or G-CSF. Leukemia 1989; 3: 270-276.
  19. Sachs L. The control of growth and differentiation in normal and leukemic blood cells. Cancer 1990; 65: 2196-2206.
  20. Абелев Г. И. О связи опухолевого фенотипа и дифференцировки в опухолевых клетках при гемобластозах. В кн.: Клиническая онкогематология. М.: Медицина; 2007: 172-173.
  21. Danilov S. M., Sadovnicova E., Scharenborg N. et al. Angiotensin-converting enzyme (CD 143) is abundantly expressed by denritic cells and discriminates human monocyte-derived denritic cells from acute myeloid leukemia-derived dendritic cells. Exp. Hematol. 2003; 31: 1301-1309.
  22. Садовникова Е. Ю., Свинарева Д. А., Паровичникова Е. Н. и др. Адгезивные свойства и экспрессия интегринов клетками больных острыми миелоидными лейкозами (ОМЛ), стимулированными в культуре ионофором для ионов кальция. Цитология 2004; 46 (4): 337-345.
  23. Kizhakkekara R. Specific cellular proteins associate with angiotensin-converting enzyme and regulate its intracellular transport and cleavage-secretion. J. Biol. Chem. 2008; 275: 23253-23258.
  24. Castellino F., Boucher P. E., Eichelberg K. et al. Receptor-mediated uptake of antigen/heat shock protein complexes results in major histocompatibility complex class antigen presentation via two distinct processing pathway. J. Exp. Med. 2000; 191: 1957.
  25. Singh-Jasuja H., Toes R. E. M., Spee P. et al. Cross-presentation of glycoprotein 96-associated antigens on major histocompatibility complex class I molecules requires receptor-mediated endocytosis. J. Exp. Med. 2000; 191: 1965-1976.
  26. Li C. Y., Lee J. S., Ko Y. G. et al. Heat shock protein 70 inhibits apoptosis downstream of cytochrome c release and upstream of caspase-3 activation. J. Biol. Chem. 2000; 275: 25665-25671.
  27. Buzzard K. A., Giaccia A. J., Killender M., Anderson R. L. Heat shock protein 72 modulates pathways of stress-induced apoptosis. J. Biol. Chem. 1998; 273: 17147-17153.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Consilium Medicum, 2009

Creative Commons License
此作品已接受知识共享署名-非商业性使用-相同方式共享 4.0国际许可协议的许可。
 
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».