MicroRNA-499a in heart diseases: prospects for use in diagnostics. A review
- Authors: Pisklova M.V.1,2, Baulina N.M.1,2, Kiselev I.S.1,2, Favorova O.O.1,2
-
Affiliations:
- Pirogov Russian National Research Medical University (Pirogov University)
- Chazov National Medical Research Center of Cardiology
- Issue: Vol 97, No 4 (2025): Вопросы диагностики
- Pages: 353-359
- Section: Reviews
- URL: https://journals.rcsi.science/0040-3660/article/view/292180
- DOI: https://doi.org/10.26442/00403660.2025.04.203161
- ID: 292180
Cite item
Full Text
Abstract
Cardiac-specific (or myomiR) miRNA-499a (miR-499a) is a small (21–22 bp) non-coding RNA that is involved in the regulation of cardiac function both under normal and in various pathological conditions. Every year new studies expand the range of known biological processes that are regulated by miR-499a in the heart. In acute and chronic cardiovascular diseases accompanied by cardiomyocyte damage, miR-499a enters the bloodstream and can circulate there for a long time. At the same time, it is detected in plasma significantly earlier than traditional protein biomarkers, which makes it a new promising biomarker for early diagnosis and prognosis of heart diseases. This review describes the functions of human miR-499a and its involvement in the development of heart diseases. The data indicating the high diagnostic value of this miRNA in blood are presented.
Full Text
##article.viewOnOriginalSite##About the authors
Maria V. Pisklova
Pirogov Russian National Research Medical University (Pirogov University); Chazov National Medical Research Center of Cardiology
Author for correspondence.
Email: pisklova_maria@mail.ru
ORCID iD: 0000-0001-7844-3328
аспирант ФГАОУ ВО «РНИМУ им. Н.И. Пирогова», лаборант-исследователь Лаб. функциональной геномики сердечно-сосудистых заболеваний
Russian Federation, Moscow; MoscowNatalia M. Baulina
Pirogov Russian National Research Medical University (Pirogov University); Chazov National Medical Research Center of Cardiology
Email: pisklova_maria@mail.ru
ORCID iD: 0000-0001-8767-2958
канд. биол. наук, старший научный сотрудник Научно-исследовательской лаб. «Медицинская геномика» ФГАОУ ВО «РНИМУ им. Н.И. Пирогова», старший научный сотрудник Лаб. функциональной геномики сердечно-сосудистых заболеваний
Russian Federation, Moscow; MoscowIvan S. Kiselev
Pirogov Russian National Research Medical University (Pirogov University); Chazov National Medical Research Center of Cardiology
Email: pisklova_maria@mail.ru
ORCID iD: 0000-0003-3366-4113
канд. биол. наук, старший научный сотрудник Научно-исследовательской лаб. «Медицинская геномика» ФГАОУ ВО «РНИМУ им. Н.И. Пирогова», старший научный сотрудник Лаб. функциональной геномики сердечно-сосудистых заболеваний
Russian Federation, Moscow; MoscowOlga O. Favorova
Pirogov Russian National Research Medical University (Pirogov University); Chazov National Medical Research Center of Cardiology
Email: pisklova_maria@mail.ru
ORCID iD: 0000-0002-5271-6698
доктор биол. наук, профессор, профессор кафедры молекулярной биологии и мед. биотехнологии медико-биологического фак-та, главный научный сотрудник Научно-исследовательской лаборатории «Медицинская геномика» ФГАОУ ВО «РНИМУ им. Н.И. Пирогова», рук. лаборатории функциональной геномики сердечно-сосудистых заболеваний
Russian Federation, Moscow; MoscowReferences
- MIR499A microRNA 499a [Homo sapiens (human)] – Gene – NCBI. Available at: https://www.ncbi.nlm.nih.gov/gene/574501. Accessed: 17.03.2024.
- O’Brien J, Hayder H, Zayed Y, Peng C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front Endocrinol. 2018;9. doi: 10.3389/fendo.2018.00402
- miRBase. Available at: https://www.mirbase.org/ Accessed: 17.03.2024.
- Cui C, Cui Q. The relationship of human tissue microRNAs with those from body fluids. Sci Rep. 2020;10(1):5644. doi: 10.1038/s41598-020-62534-6
- Nappi F, Avtaar Singh SS, Jitendra V, et al. The Roles of microRNAs in the Cardiovascular System. Int J Mol Sci. 2023;24(18):14277. doi: 10.3390/ijms241814277
- Condrat CE, Thompson DC, Barbu MG, et al. miRNAs as Biomarkers in Disease: Latest Findings Regarding Their Role in Diagnosis and Prognosis. Cells. 2020;9(2):276. doi: 10.3390/cells9020276
- Kramna D, Riedlova P, Jirik V. MicroRNAs as a Potential Biomarker in the Diagnosis of Cardiovascular Diseases. Medicina. 2023;59(7):1329. doi: 10.3390/medicina59071329
- Liang Y, Ridzon D, Wong L, Chen C. Characterization of microRNA expression profiles in normal human tissues. BMC Genomics. 2007;8:166. doi: 10.1186/1471-2164-8-166
- Baskerville S, Bartel DP. Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA. 2005;11(3):241-7. doi: 10.1261/rna.7240905
- Lee LA, Broadwell LJ, Buvoli M, Leinwand LA. Nonproductive Splicing Prevents Expression of MYH7b Protein in the Mammalian Heart. J Am Heart Assoc. 2021;10(14):e020965. doi: 10.1161/JAHA.121.020965
- Khvorova A, Reynolds A, Jayasena SD. Functional siRNAs and miRNAs exhibit strand bias. Cell. 2003;115(2):209-16. doi: 10.1016/s0092-8674(03)00801-8
- miRTarBase: the experimentally validated microRNA-target interactions database. Available at: https://mirtarbase.cuhk.edu.cn/~miRTarBase/miRTarBase_2022/php/index.php. Accessed: 17.03.2024.
- Zhong Z, Zhong W, Zhang Q, et al. Circulating microRNA expression profiling and bioinformatics analysis of patients with coronary artery disease by RNA sequencing. J Clin Lab Anal. 2019;34(1):e23020. doi: 10.1002/jcla.23020
- Han YH, Ma DY, Lee SJ, et al. Bioinformatics Analysis of Novel Targets for Treating Cervical Cancer by Immunotherapy Based on Immune Escape. Cancer Genomics Proteomics. 2023;20(4):383-97. doi: 10.21873/cgp.20390
- Liu HM, Ji F, Lu Y, Chen SY. MiR-499b-5p inhibits cervical cancer cell proliferation and induces apoptosis by targeting the Notch1 signaling pathway. Eur Rev Med Pharmacol Sci. 2021;25(20):6220-31. doi: 10.26355/eurrev_202110_26992
- Zhang L, Zhang J, Li P, et al. Exosomal hsa_circ_0004658 derived from RBPJ overexpressed-macrophages inhibits hepatocellular carcinoma progression via miR-499b-5p/JAM3. Cell Death Dis. 2022;13(1):32. doi: 10.1038/s41419-021-04345-9
- Giagnorio E, Malacarne C, Mantegazza R, et al. MyomiRs and their multifaceted regulatory roles in muscle homeostasis and amyotrophic lateral sclerosis. J Cell Sci. 2021;134(12):jcs258349. doi: 10.1242/jcs.258349
- Kaur A, Mackin ST, Schlosser K, et al. Systematic review of microRNA biomarkers in acute coronary syndrome and stable coronary artery disease. Cardiovasc Res. 2020;116(6):1113-24. doi: 10.1093/cvr/cvz302
- Espinoza-Lewis RA, Wang DZ. MicroRNAs in Heart Development. Curr Top Dev Biol. 2012;100:279-317. doi: 10.1016/B978-0-12-387786-4.00009-9
- Wilson KD, Hu S, Venkatasubrahmanyam S, et al. Dynamic MicroRNA Expression Programs During Cardiac Differentiation of Human Embryonic Stem Cells. Circulation: Cardiovascular Genetics. 2010;3(5):426-35. doi: 10.1161/CIRCGENETICS.109.934281
- Xin Y, Yang C, Han Z. Circulating miR-499 as a potential biomarker for acute myocardial infarction. Ann Transl Med. 2016;4(7):135. doi: 10.21037/atm.2016.03.40
- Gonçalves TJM, Boutillon F, Lefebvre S, et al. Collagen XXV promotes myoblast fusion during myogenic differentiation and muscle formation. Sci Rep. 2019;9(1):5878. doi: 10.1038/s41598-019-42296-6
- Shi Y, Han Y, Niu L, et al. MiR-499 inhibited hypoxia/reoxygenation induced cardiomyocytes injury by targeting SOX6. Biotechnol Lett. 2019;41(6):837-47. doi: 10.1007/s10529-019-02685-3
- Han X, Wang S, Yong Z, et al. Effect of miR-499-5p/SOX6 axis on atrial fibrosis in rats with atrial fibrillation. Open Med (Wars). 2023;18(1):20230654. doi: 10.1515/med-2023-0654
- Šigutová R, Evin L, Stejskal D, et al. Specific microRNAs and heart failure: time for the next step toward application? Biomedical papers of the Medical Faculty of the University Palacky, Olomouc, Czechoslovakia. 2022; p. 166. doi: 10.5507/bp.2022.028
- Kmecova Z, Veteskova J, Lelkova-Zirova K, et al. Disease severity-related alterations of cardiac microRNAs in experimental pulmonary hypertension. J Cell Mol Med. 2020;24(12):6943-51. doi: 10.1111/jcmm.15352
- Zhao L, Li W, Zhao H. Inhibition of long non-coding RNA TUG1 protects against diabetic cardiomyopathy induced diastolic dysfunction by regulating miR-499-5p. Am J Transl Res. 2020;12(3):718-30.
- Chistiakov DA, Orekhov AN, Bobryshev YV. Cardiac-specific miRNA in cardiogenesis, heart function, and cardiac pathology (with focus on myocardial infarction). J Mol Cell Cardiol. 2016;94:107-21. doi: 10.1016/j.yjmcc.2016.03.015
- Lee GK, Hsieh YP, Hsu SW, Lan SJ. Exploring diagnostic and prognostic predictive values of microRNAs for acute myocardial infarction. Medicine (Baltimore). 2021;100(29):e26627. doi: 10.1097/MD.0000000000026627
- Kuwabara Y, Ono K, Horie T, et al. Increased microRNA-1 and microRNA-133a levels in serum of patients with cardiovascular disease indicate myocardial damage. Circ Cardiovasc Genet. 2011;4(4):446-54. doi: 10.1161/CIRCGENETICS.110.958975
- De Rosa S, Fichtlscherer S, Lehmann R, et al. Transcoronary concentration gradients of circulating microRNAs. Circulation. 2011;124(18):1936-44. doi: 10.1161/CIRCULATIONAHA.111.037572
- Agiannitopoulos K, Pavlopoulou P, Tsamis K, et al. Expression of miR-208b and miR-499 in Greek Patients with Acute Myocardial Infarction. In Vivo. 2018;32(2):313-8. doi: 10.21873/invivo.11239
- Li P, Li SY, Liu M, et al. Value of the expression of miR-208, miR-494, miR-499 and miR-1303 in early diagnosis of acute myocardial infarction. Life Sci. 2019;232:116547. doi: 10.1016/j.lfs.2019.116547
- Cheng M, Yang J, Zhao X, et al. Circulating myocardial microRNAs from infarcted hearts are carried in exosomes and mobilise bone marrow progenitor cells. Nat Commun. 2019;10:959. doi: 10.1038/s41467-019-08895-7
- Wang X, Tian L, Sun Q. Diagnostic and prognostic value of circulating miRNA-499 and miRNA-22 in acute myocardial infarction. J Clin Lab Anal. 2020;34(8):e23332. doi: 10.1002/jcla.23332
- Wang W, Li T, Gao L, et al. Diagnostic and prognostic impact of circulating microRNA-208b and microRNA-499 in patients with acute coronary syndrome. Biomark Med. 2020;14(2):87-95. doi: 10.2217/bmm-2019-0257
- Singh S, de Ronde MWJ, Kok MGM, et al. MiR-223-3p and miR-122-5p as circulating biomarkers for plaque instability. Open Heart. 2020;7(1):e001223. doi: 10.1136/openhrt-2019-001223
- Schulte C, Barwari T, Joshi A, et al. Comparative Analysis of Circulating Noncoding RNAs Versus Protein Biomarkers in the Detection of Myocardial Injury. Circ Res. 2019;125(3):328-40. doi: 10.1161/CIRCRESAHA.119.314937
- da Silva AMG, de Araújo JNG, de Oliveira KM, et al. Circulating miRNAs in acute new-onset atrial fibrillation and their target mRNA network. J Cardiovasc Electrophysiol. 2018;29(8):1159-66. doi: 10.1111/jce.13612
- Ma R, Wang J, Wu X, et al. MiR-499 is a diagnostic biomarker of paroxysmal atrial fibrillation involved in the development of atrial fibrillation. Int J Clin Exp Pathol. 2017;10(4):4221-31.
- Ling TY, Wang XL, Chai Q, et al. Regulation of the SK3 channel by MicroRNA-499 – potential role in atrial fibrillation. Heart Rhythm. 2013;10(7):1001-9. doi: 10.1016/j.hrthm.2013.03.005
- Zhao Q, Yang W, Li X, et al. MicroRNA-499-5p inhibits transforming growth factor-β1-induced Smad2 signaling pathway and suppresses fibroblast proliferation and collagen synthesis in rat by targeting TGFβ-R1. Mol Biol Rep. 2023;50(12):9757-67. doi: 10.1007/s11033-023-08755-0
- Baulina NM, Kiselev IS, Chumakova OS, Favorova OO. Hypertrophic Cardiomyopathy as an Oligogenic Disease: Transcriptomic Arguments. Mol Biol. 2020;54(6):840-50. doi: 10.1134/S0026893320060023
- Baulina N, Pisklova M, Kiselev I, et al. Circulating miR-499a-5p Is a Potential Biomarker of MYH7–Associated Hypertrophic Cardiomyopathy. Int J Mol Sci. 2022;23(7):3791. doi: 10.3390/ijms23073791
- Thottakara T, Lund N, Krämer E, et al. A Novel miRNA Screen Identifies miRNA-4454 as a Candidate Biomarker for Ventricular Fibrosis in Patients with Hypertrophic Cardiomyopathy. Biomolecules. 2021;11(11):1718. doi: 10.3390/biom11111718
- Foglieni C, Lombardi M, Lazzeroni D, et al. Myosins and MyomiR Network in Patients with Obstructive Hypertrophic Cardiomyopathy. Biomedicines. 2022;10(9):2180. doi: 10.3390/biomedicines10092180
- Montag J, Petersen B, Flögel AK, et al. Successful knock-in of Hypertrophic Cardiomyopathy-mutation R723G into the MYH7 gene mimics HCM pathology in pigs. Sci Rep. 2018;8:4786. doi: 10.1038/s41598-018-22936-z
- Broadwell LJ, Smallegan MJ, Rigby KM, et al. Myosin 7b is a regulatory long noncoding RNA (lncMYH7b) in the human heart. J Biol Chem. 2021;296:100694. doi: 10.1016/j.jbc.2021.100694
- Lu JY, Chen MH, Zhang JF, et al. Association between miR-499 rs3746444 polymorphism and coronary heart disease susceptibility: An evidence-based meta-analysis of 5063 cases and 4603 controls. Gene. 2019;698:34-40. doi: 10.1016/j.gene.2019.02.045
- Yang Y, Shi X, Du Z, et al. Associations between genetic variations in microRNA and myocardial infarction susceptibility: a meta-analysis and systematic review. Herz. 2022;47(6):524-35. doi: 10.1007/s00059-021-05086-3
- Hromádka M, Černá V, Pešta M, et al. Prognostic Value of MicroRNAs in Patients after Myocardial Infarction: A Substudy of PRAGUE-18. Dis Markers. 2019;2019:2925019. doi: 10.1155/2019/2925019
- Robinson S, Follo M, Haenel D, et al. Chip-based digital PCR as a novel detection method for quantifying microRNAs in acute myocardial infarction patients. Acta Pharmacol Sin. 2018;39(7):1217-27. doi: 10.1038/aps.2017.136
- Zhang L, Chen X, Su T, et al. Circulating miR-499 are novel and sensitive biomarker of acute myocardial infarction. J Thorac Dis. 2015;7(3):303-8. doi: 10.3978/j.issn.2072-1439.2015.02.05
- Yao Y, Du J, Cao X, et al. Plasma Levels of MicroRNA-499 Provide an Early Indication of Perioperative Myocardial Infarction in Coronary Artery Bypass Graft Patients. PLoS One. 2014;9(8):e104618. doi: 10.1371/journal.pone.0104618
- Liu G, Niu X, Meng X, Zhang Z. Sensitive miRNA markers for the detection and management of NSTEMI acute myocardial infarction patients. J Thorac Dis. 2018;10(6):3206-15. doi: 10.21037/jtd.2018.05.141
- Pinchi E, Frati P, Aromatario M, et al. miR-1, miR-499 and miR-208 are sensitive markers to diagnose sudden death due to early acute myocardial infarction. J Cell Mol Med. 2019;23(9):6005-16. doi: 10.1111/jcmm.14463
- Zhao J, Yu H, Yan P, et al. Circulating MicroRNA-499 as a Diagnostic Biomarker for Acute Myocardial Infarction: A Meta-analysis. Dis Markers. 2019;2019:6121696. doi: 10.1155/2019/6121696
- Wang W, Li T, Gao L, et al. Plasma miR-208b and miR-499: Potential Biomarkers for Severity of Coronary Artery Disease. Dis Markers. 2019;2019:9842427. doi: 10.1155/2019/9842427
- Gacoń J, Badacz R, Stępień E, et al. Diagnostic and prognostic micro-RNAs in ischaemic stroke due to carotid artery stenosis and in acute coronary syndrome: a four-year prospective study. Kardiol Pol. 2018;76(2):362-9. doi: 10.5603/KP.a2017.0243
- Robinson S, Follo M, Haenel D, et al. Droplet digital PCR as a novel detection method for quantifying microRNAs in acute myocardial infarction. Int J Cardiol. 2018;257:247-54. doi: 10.1016/j.ijcard.2017.10.111
- Gao YP, Huang KJ, Wang BY, et al. Constructed a self-powered sensing platform based on nitrogen-doped hollow carbon nanospheres for ultra-sensitive detection and real-time tracking of double markers. Anal Chim Acta. 2023;1267:341333. doi: 10.1016/j.aca.2023.341333
- Shi L, Liu C, Wang H, et al. Framework and Spherical Nucleic Acids Synergistically Enhanced Electrochemiluminescence Nanosensors for Rapidly Diagnosing Acute Myocardial Infarction Based on Circulating MicroRNA Levels. Anal Chem. 2022;94(41):14394-401. doi: 10.1021/acs.analchem.2c03144
- Cheng X, Ren D, Xu G, et al. Metal-organic frameworks-assisted nonenzymatic cascade amplification multiplexed strategy for sensing acute myocardial infarction related microRNAs. Biosens Bioelectron. 2022;196:113706. doi: 10.1016/j.bios.2021.113706
- Ren X, Ellis B, Ronan G, et al. A Multiplexed Ion-exchange Membrane-based miRNA (MIX.miR) Detection Platform for Rapid Diagnosis of Myocardial Infarction. Lab Chip. 2021;21(20):3876-87. doi: 10.1039/d1lc00685a
- Li P, Ye Y, Li Y, et al. A MoS2 nanosheet-based CRISPR/Cas12a biosensor for efficient miRNA quantification for acute myocardial infarction. Biosens Bioelectron. 2024;251:116129. doi: 10.1016/j.bios.2024.116129
Supplementary files
