Efficiency and safety of the integrated use of medical gases thermal heliox, nitric oxide and molecular hydrogen in patients with exacerbation of chronic obstructive pulmonary disease complicated by hypoxemic, hypercapnic respiratory failure and secondary pulmonary arterial hypertension in the post-COVID period

Cover Page

Cite item

Full Text

Abstract

Aim. To study the efficacy and safety of the combined use of thermal heliox (t-He/O2), nitric oxide (NO) and molecular hydrogen (H2) in patients with exacerbation of chronic obstructive pulmonary disease (COPD) complicated by hypoxemic, hypercapnic respiratory failure (RF) and secondary pulmonary arterial hypertension (PAH) in the post-COVID period.

Materials and methods. The randomized, comparative, controlled, parallel study included patients (n=100, 52 men and 48 women) with exacerbation of COPD levels of evidence C and D (GOLD 2021–2023) with hypoxemic, hypercapnic respiratory failure and secondary PAH, who had pneumonia caused by SARS-CoV-2 before hospitalization. Patients with similar demographic, clinical, and functional parameters, who received non-invasive ventilation (NIV) and oxygen (O2) along with standard drug therapy, were divided into 5 groups: Group 1 (main): (n=22: 12 men, 10 women, who received t-He/O2, NO, and H2 sequentially); Group 2 (n=20: 10 men, 10 women, who received t-He/O2 and NO); Group 3 (n=20: 11 men, 9 women, who received t-He/O2 and H2); Group 4 (n=18: 10 men, 8 women, who received NO and H2); Group 5 (control) (n=20: 9 men, 11 women). The dynamics of the clinical condition of patients, gas exchange in the lungs, acid-base balance, left-to-right discharge fraction, hemodynamic parameters, and exercise tolerance were assessed.

Results. A positive effect of the complex use of medical gases on the clinical condition of patients, gas exchange parameters in the lungs, metabolism, hemodynamic parameters and exercise tolerance was found in comparison with these parameters in patients who received medical gases separately and with the control group.

Conclusion. The combination of t-He/O2, NO and H2 with simultaneous pathogenetic therapy and NIV in patients with exacerbation of COPD complicated by hypoxemic, hypercapnic RF and secondary PAH in the post-COVID period is safe and more effective compared to groups receiving each medical gas separately. Complex therapy improves the clinical condition of patients, reduces signs of hypoxemia and hypercapnia, vascular endothelial dysfunction, metabolic disorders and increases tolerance to physical activity by normalizing gas exchange in the lungs, increasing oxygen delivery to tissues, reducing the shunt fraction, and restoring metabolism.

About the authors

Ludmila V. Shogenova

Pirogov Russian National Research Medical University (Pirogov University)

Author for correspondence.
Email: i.batova@omnidoctor.ru
ORCID iD: 0000-0001-9285-9303

кандидат медицинских наук, доц. каф. госпитальной терапии Института материнства и детства

Russian Federation, Moscow

References

  1. Subramanian A, Nirantharakumar K, Hughes S, et al. Symptoms and risk factors for long COVID in non-hospitalized adults. Nat Med. 2022;28:1706-14. doi: 10.1038/s41591-022-01909-w
  2. Zhao Q, Meng M, Kumar R, et al. The impact of COPD and smoking history on the severity of COVID-19: a systemic review and meta-analysis. J Med Virol. 2020;92(10):1915-21. doi: 10.1002/jmv.25889
  3. Шогенова Л.В., Варфоломеев С.Д., Быков В.И., и др. Влияние термической гелий-кислородной смеси на вирусную нагрузку при COVID-19. Пульмонология. 2020;30(5):533-43 [Shogenova LV, Varfolomeev SD, Bykov VI, et al. Effect of thermal helium-oxygen mixture on viral load in COVID-19. Pulmonology. 2020;30(5):533-43 (in Russian)]. doi: 10.18093/0869-0189-2020-30-5-533-543
  4. Alhazzani W, Møller MH, Arabi YM, et al. Surviving Sepsis Campaign: Guidelines on the Management of Critically Ill Adults with Coronavirus Disease 2019 (COVID-19). Crit Care Med. 2020;48(6):e440-69. doi: 10.1097/CCM.0000000000004363
  5. Чучалин А.Г. Лекция по теме «Пневмония-2020». Режим доступа: https://vk.com/video-64115009_456239395. Ссылка активна на 28.11.2024 [Chuchalin AG. Lecture on the topic “Pneumonia-2020”. Available at: https://vk.com/video-64115009_456239395. Accessed: 28.11.2024 (in Russian)].
  6. Morgan SE, Vukin K, Mosakowski S, et al. Use of heliox delivered via high-flow nasal cannula to treat an infant with coronavirus-related respiratory infection and severe acute air-flow obstruction. Respir Care. 2014;59(11):e166-70. doi: 10.4187/respcare.02728
  7. Петриков С.С., Журавель С.В., Шогенова Л.В., и др. Термическая гелий-кислородная смесь в лечебном алгоритме больных с COVID-19. Вестник РАМН. 2020;75(5S):353-62 [Petrikov SS, Zhuravel SV, Shogenova LV, et al. Thermal helium-oxygen mixture in the treatment algorithm of patients with COVID-19. Bulletin of RAMS. 2020;75(5S):353-62 (in Russian)]. doi: 10.15690/vramn1412
  8. Варфоломеев С.Д., Журавель С.В., Панин А.А, и др. Термовакцинация – термогелиокс как стимулятор иммунного ответа. Кинетика синтеза антител и С-реактивного белка при коронавирусной инфекции. Доклады Российской академии наук. Науки о жизни. 2021;496(1):44-7 [Varfolomeev SD, Zhuravel SV, Panin AA, et al. Thermovaccination – thermogeliox as a stimulator of immune response. Kinetics of antibody synthesis and C-reactive protein in coronavirus infection. Reports of the Russian Academy of Sciences. Life Sciences. 2021;496(1):44-7 (in Russian)]. doi: 10.1134/S1607672921010129
  9. Позднякова Д.Д., Бахарева Т.А., Баранова И.А., и др. Реабилитационная программа постковидного синдрома с применением оксида азота и молекулярного водорода. Терапевтический архив. 2024;96(3):260-5 [Pozdnyakova DD, Bakhareva TA, Baranova IA, et al. Rehabilitation program of postcovical syndrome with the use of nitric oxide and molecular hydrogen. Terapevticheskii Arkhiv (Ter. Arkh.). 2024;96(3):260-5 (in Russian)]. doi: 10.26442/00403660.2024.03.202639
  10. Марков Х.М. Оксид азота и сердечно-сосудистая система. Успехи физиологических наук. 2001;32(3):49-65 [Markov HM. Nitrogen oxide and the cardio-vascular system. Advances in Physiological Sciences. 2001;32(3):49-65 (in Russian)].
  11. Ignarro LJ, Cirino G, Casini A, Napoli C. Nitric oxide as a signaling molecule in the vascular system: an overview. J Cardiovasc Pharmacol. 1999;34(6):879-86. doi: 10.1097/00005344-199912000-00016
  12. Нгуен Х.К., Позднякова Д.Д., Баранова И.А., Чучалин А.Г. Применение ингаляций оксида азота при COVID-19. Пульмонология. 2024;34(3):454-63 [Nguyen HC, Pozdnyakova DD, Baranova IA, Chuchalin AG. Use of inhaled nitric oxide in COVID-19. Pulmonology. 2024;34(3):454-63 (in Russian)]. doi: 10.18093/0869-0189-2024-4305
  13. Ignarro LJ. Nitric oxide. Reference module in biomedical sciences. Elsevier; Amsterdam, 2014.
  14. American Academy of Pediatrics. Committee on Fetus and Newborn. Use of inhaled nitric oxide. Pediatrics. 2000;106(2 Pt. 1):344-45.
  15. Wright RO, Lewander WJ, Woolf AD. Methemoglobinemia: etiology, pharmacology, and clinical management. Ann Emergency Med. 1999;34(5):646-56. doi: 10.1016/s0196-0644(99)70167-8
  16. Цыганова Т.Н., Егоров Е., Воронина Т.Н. Оксид азота и интервальная гипоксическая тренировка в реабилитации COVID-19 – новое направление исследований. Физиотерапевт. 2021;4 [Tsyganova TN, Egorov E, Voronina TN. Nitric oxide and interval hypoxic training in COVID-19 rehabilitation – new research direction. Physiotherapist. 2021;4 (in Russian)]. doi: 10.33920/med-14-2108-04
  17. Гриневич В.В., Акмаев И.Г., Волкова О.В. Основы взаимодействия нервной, эндокринной и иммунной систем. СПб.: Symposium, 2004 [Grinevich VV, Akmaev IG, Volkova OV. Osnovy vzaimodeistviia nervnoi, endokrinnoi i immunnoi sistem. Saint Petersburg: Symposium, 2004 (in Russian)].
  18. Малахов В.А., Завгородняя А.Н., Лычко В.С., и др. Проблема оксида азота в неврологии: монография. Сумы: СумДПУ им. А.С. Макаренко, 2009 [Malahov VA, Zavgorodniaia AN, Lychko VS, et al. Problema oksida azotu v nevrologii: monografiia. Sumy: SumDPU im. AS Makarenko, 2009 (in Russian)].
  19. Zeng Y, Guan W, Wang K, et al. Effect of hydrogen/oxygen therapy for ordinary COVID-19 patients: a propensity-score matched case-control study. BMC Infect Dis. 2023;23(1):440. doi: 10.1186/s12879-023-08424-4
  20. Шогенова Л.В., Чыонг Т.Т., Крюкова Н.О., и др. Ингаляционный водород в реабилитационной программе медицинских работников, перенесших COVID-19. Кардиоваскулярная терапия и профилактика. 2021;20(6):2986 [Shogenova LV, Truong TT, Kryukova NO, et al. Inhalation hydrogen in the rehabilitation program of medical workers who suffered COVID-19. Cardiovascular Therapy and Prevention. 2021;20(6):2986 (in Russian)]. doi: 10.15829/1728-8800-2021-2986
  21. Malmros C, Blomquist S, Dahm P, et al. Nitric oxide inhalation decreases pulmonary platelet and neutrophil sequestration during extracorporeal circulation in the pig. Crit Care Med. 1996;24(5):845-9. doi: 10.1097/00003246-199605000-00019

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The severity of lung damage according to CT in the acuity of COVID-19 (%).

Download (124KB)
3. Fig. 2. Study design.

Download (446KB)
4. Fig. 3. Change of PaO₂ on days 1, 2, 3, 6, 10, and 14: a – intragroup comparison, here and further in Fig. 4, 5: *each subsequent day compared to the day of the previous measurement (p<0.05); b – intergroup comparison on Day 2: @medication+NIV+O₂ compared to t-He/O₂+NO+H₂ on Day 3: *t-He/O₂+NO+H₂ compared to t-He/O₂+NO, NO+H₂, medication+NIV+O₂, @medication+NIV+O₂ compared to t-He/O₂+NO, t-He/O₂+H₂; on Days 6, 10 and 14: * t-He/O₂+NO+H₂ compared to NO+H₂, medication+NIV+O₂, #t-He/O₂+NO compared to NO+H₂, medication+NIV+O₂, @medication+NIV+O₂ compared to t-He/O₂+H₂ (p<0.05).

Download (131KB)
5. Fig. 4. Change of PaCO₂ on Days 1, 2, 3, 6, 10, and 14: a – intragroup comparison; b – intergroup comparison on Day 1: *t-He/O₂+NO+H₂ compared to t-He/O₂+H₂; on Day 2: *t-He/O₂+NO+H₂ compared to t-He/O₂+H₂, NO+H₂; &NO+H₂ compared to t-He/O₂+NO, medication+NIV+O₂ on Days 3 and 6; &NO+H₂ and @medication+NIV+O₂ compared to other groups; &NO+H₂ compared to t-He/O₂+NO, medication+NIV+O₂ (p<0.05).

Download (137KB)
6. Fig. 5. Change of intrapulmonary shunt fraction on Days 1, 2, 3, 6, 10, and 14: a – intragroup comparison; b – intergroup comparison on Day 1: *t-He/O₂+NO+H₂ compared to all other groups; on Day 2; $NO+H₂ compared to t-He/O₂+NO+H₂, t-He/O₂+NO, t-He/O₂+H₂; @medication+NIV+O₂ compared to all other groups and on Days 3, 6, 10, and 14: @medication+NIV+O₂ compared to all other groups (p<0.05).

Download (108KB)

Copyright (c) 2025 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».