The effectiveness of hardware CPAP therapy in heart failure with preserved left ventricular ejection fraction and obstructive sleep apnea syndrome

Cover Page

Cite item

Full Text

Abstract

Aim. To evaluate the effectiveness of hardware Continuous Positive Airway Pressure therapy (CPAP therapy) and its likely predictors in patients with heart failure with preserved ejection fraction (HFpEF) associated with obstructive sleep apnea syndrome (OSAS).

Materials and methods. The study involved 207 men with HFpEF and OSAS (apnea/hypopnea index >15 per hour) who did not initially have ischemic disease and other structural heart pathology. At inclusion in the study, polysomnography and echocardiography were performed with an assessment of diastolic function and global longitudinal deformation of the left ventricular myocardium, as well as a 6-minute walk test (6MWT) and the level of the brain natriuretic peptide precursor (NT-proBNP) in the blood was determined. 80 patients received hardware CPAP the rapy, 127 patients made up the control group. After 12 months, 6MWT was repeated, NT-proBNP was determined, and clinical outcomes were assessed retrospectively.

Results. The CPAP group had 16% fewer hospitalizations (p=0.011 [95% confidence interval – CI 4.29]) and showed a trend towards an increase in the 6MWT distance (p=0.065). To assess the likely predictors of the effectiveness of CPAP therapy, a subgroup of “responders” was identified, characterized by an increase in the distance according to the 6MWT, a decrease in the level of NT-proBNP, and the absence of adverse clinical events during the observation period. There were significant differences between responders and non-responders in apnea/hypopnea index (p=0.01 [95% CI -10.6; -2.5]), global longitudinal deformation of the left ventricular myocardium (p=0.05 [95% CI -4.7; 0]), diastolic function E/A (p=0.02 [95% CI -0.1; 0]).

Conclusion. CPAP therapy improves clinical outcomes and functional status in patients with OSAS-associated HFpEF. The predictive model built using the identified efficacy predictors can be used to develop a personalized treatment algorithm for this cohort of patients.

About the authors

Alexey V. Yakovlev

Novosibirsk State Medical University

Author for correspondence.
Email: alex-yak-card@mail.ru
ORCID iD: 0000-0002-4763-0961

Cand. Sci. (Med.), Novosibirsk State Medical University

Russian Federation, Novosibirsk

Ivan A. Efremov

Novosibirsk State Medical University

Email: mr.and1997@inbox.ru
ORCID iD: 0000-0002-1704-2528

Postgraduate student, Department of Therapy, Hematology and Transfusiology

Russian Federation, Novosibirsk

Natalia F. Yakovlevа

Novosibirsk State Medical University

Email: yakovlevanf@yandex.ru
ORCID iD: 0000-0002-4736-6486

Cand. Sci. (Med.), Novosibirsk State Medical University

Russian Federation, Novosibirsk

Sergey N. Shilov

Novosibirsk State Medical University

Email: newsib54@gmail.com
ORCID iD: 0000-0002-7777-6419

D. Sci. (Med.), Novosibirsk State Medical University

Russian Federation, Novosibirsk

Andrey N. Ryabikov

Novosibirsk State Medical University

Email: andrew_ryabikov@mail.ru
ORCID iD: 0000-0001-9868-855X

MD, PhD, DSc, Professor, Department of Therapy, Hematology and Transfusiology

Russian Federation, Novosibirsk

Alexander T. Teplyakov

Tomsk National Research Medical Center

Email: vgelen1970@gmail.ru
ORCID iD: 0000-0003-0721-0038

D. Sci. (Med.), Prof.

Russian Federation, Tomsk

Elena V. Grakova

Tomsk National Research Medical Center

Email: gev@cardio-tomsk.ru
ORCID iD: 0000-0003-4019-3735

D. Sci. (Med.)

Russian Federation, Tomsk

Kristina V. Kopeva

Tomsk National Research Medical Center

Email: kristin-kop@inbox.ru
ORCID iD: 0000-0002-2285-6438

Cand. Sci. (Med.)

Russian Federation, Tomsk

Ilya V. Shirokikh

Federal Center for Traumatology, Orthopedics and Arthroplasty

Email: shir413@mail.ru
ORCID iD: 0000-0002-5324-3132

Resident Physician

Russian Federation, Barnaul

References

  1. Бойцов С.А., Шальнова С.А., Деев А.Д. Эпидемиологическая ситуация как фактор, определяющий стратегию действий по снижению смертности в Российской Федерации. Терапевтический архив. 2020;92(1):4-9 [Boytsov SA, Shalnova SA, Deev AD. The epidemiological situation as a factor determining the strategy for reducing mortality in the Russian Federation. Terapevticheskii Arkhiv (Ter. Arkh.). 2020;92(1):4-9 (in Russian)]. doi: 10.26442/00403660.2020.01.000510
  2. Медведева Е.А., Коростовцева Л.С., Сазонова Ю.В., и др. Синдром обструктивного апноэ во сне при хронической сердечной недостаточности: взгляд кардиолога. Российский кардиологический журнал. 2018;1:78-82 [Medvedeva EA, Korostovtseva LS, Sazonova YuV, et al. Obstructive sleep apnea syndrome in chronic heart failure: a cardiologist's perspective. Russian Journal of Cardiology. 2018;1:78-82 (in Russian)]. doi: 10.15829/1560-4071-2018-1-78-82
  3. Maeder MT, Schoch OD, Buser M, et al. Obstructive sleep apnea and heart failure. Cardiovascular Medicine. 2017;20(2):9-17. doi: 10.4414/cvm.2017.00452
  4. Бузунов Р.В., Пальман А.Д., Мельников А.Ю., и др. Диагностика и лечение синдрома обструктивного апноэ сна у взрослых. Рекомендации Российского общества сомнологов. Эффективная фармакотерапия. 2018;35:34-45 [Buzunov RV, Palman AD, Melnikov AYu, et al. Diagnostics and treatment of obstructive sleep apnea syndrome in adults. Recommendations of the Russian Society of Sleep Medicine. Effective Pharmacotherapy. 2018;35:34-45 (in Russian)].
  5. Picard F, Panagiotidou P, Weinig L, et al. Effect of CPAP therapy on nocturnal blood pressure fluctuations, nocturnal blood pressure, and arterial stiffness in patients with coexisting cardiovascular diseases and obstructive sleep apnea. Sleep Breath. 2021;25(1):151-61. doi: 10.1007/s11325-020-02075-4
  6. Labarca G, Reyes T, Jorquera J, et al. CPAP in patients with obstructive sleep apnea and type 2 diabetes mellitus: Systematic review and meta-analysis. Clin Respir J. 2018;12(8):2361-8. doi: 10.1111/crj.12915
  7. Barros D, García-Río F. Obstructive sleep apnea and dyslipidemia: from animal models to clinical evidence. Sleep. 2019;42(3):zsy236. doi: 10.1093/sleep/zsy236
  8. Furlow B. SAVE trial: no cardiovascular benefits for CPAP in OSA. Lancet Respir Med. 2016;4(11):860. doi: 10.1016/S2213-2600(16)30300-9
  9. Carmo J, Araújo I, Marques F, Fonseca C. Sleep-disordered breathing in heart failure: The state of the art after the SERVE-HF trial. Rev Port Cardiol. 2017;36(11):859-67. doi: 10.1016/j.repc.2017.06.007
  10. Bakker JP, Weaver TE, Parthasarathy S, Aloia MS. Adherence to CPAP: What Should We Be Aiming For, and How Can We Get There? Chest. 2019;155(6):1272-87. doi: 10.1016/j.chest.2019.01.012
  11. Российское кардиологическое общество (РКО). Хроническая сердечная недостаточность. Клинические рекомендации 2020. Российский кардиологический журнал. 2020;25(11):4083 [Russian Society of Cardiology (RSC). 2020 Clinical practice guidelines for Сhronic heart failure. Russian Journal of Cardiology. 2020;25(11):4083 (in Russian)]. doi: 10.15829/1560-4071-2020-4083
  12. Sun H, Shi J, Li M, Chen X. Impact of continuous positive airway pressure treatment on left ventricular ejection fraction in patients with obstructive sleep apnea: a meta-analysis of randomized controlled trials. PLoS One. 2013;8(5):e62298. doi: 10.1371/journal.pone.0062298
  13. Cifçi N, Uyar M, Elbek O, et al. Impact of CPAP treatment on cardiac biomarkers and pro-BNP in obstructive sleep apnea syndrome. Sleep Breath. 2010;14(3):241-4. doi: 10.1007/s11325-009-0306-y
  14. Hammerstingl C, Schueler R, Wiesen M, et al. Impact of untreated obstructive sleep apnea on left and right ventricular myocardial function and effects of CPAP therapy. PLoS One. 2013;8(10):e76352. doi: 10.1371/journal.pone.0076352
  15. Mazzotti DR, Keenan BT, Lim DC, et al. Symptom Subtypes of Obstructive Sleep Apnea Predict Incidence of Cardiovascular Outcomes. Am J Respir Crit Care Med. 2019;200(4):493-506. doi: 10.1164/rccm.201808-1509OC
  16. Peker Y, Glantz H, Eulenburg C, et al. Effect of Positive Airway Pressure on Cardiovascular Outcomes in Coronary Artery Disease Patients with Nonsleepy Obstructive Sleep Apnea. The RICCADSA Randomized Controlled Trial. Am J Respir Crit Care Med. 2016;194(5):613-20. doi: 10.1164/rccm.201601-0088OC
  17. Tadic M, Gherbesi E, Faggiano A, et al. The impact of continuous positive airway pressure on cardiac mechanics: Findings from a meta-analysis of echocardiographic studies. J Clin Hypertens (Greenwich). 2022;24(7):795-803. doi: 10.1111/jch.14488
  18. Msaad S, Marrakchi R, Grati M, et al. How does serum brain natriuretic peptide level change under nasal continuous positive airway pressure in obstructive sleep apnea-hypopnea syndrome? Libyan J Med. 2016;11:31673. doi: 10.3402/ljm.v11.31673

Copyright (c) 2024 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies