Study of antitumor effects of human placenta hydrolysate on PC-3, OAW-42, BT-474 cell cultures

Cover Page

Cite item

Full Text

Abstract

Aim. To investigate the antitumor effects of human placenta hydrolysate (HPH) peptides on three hormone-dependent human cell lines: prostate adenocarcinoma, breast carcinoma, and ovarian cancer by metabolic analysis of cell cultures.

Materials and methods. The effect of HPH on tumor and control tumor cell lines was evaluated. Study stages: (A) de novo peptide sequencing by collision-induced dissociation mass spectrometry; (B) detection of peptides with anti-tumor properties; (C) expert analysis of the obtained lists of peptides.

Results. Dose-dependent cytotoxic effects of HPH on three tumor cell lines are shown: PC-3 (human prostate adenocarcinomas), OAW-42 (human ovarian cancer), BT-474 (human breast carcinomas), and IC50 constants (1.3–2.8 mg/ml) were obtained. The analysis of the HPH peptide fraction showed more than 70 peptides with antitumor properties in the composition of this HPH, including kinase inhibitors: mitogen-activated protein kinases, kappa-bi nuclear factor inhibitor kinase, AKT serine/threonine kinase 1, protein kinase C zeta, interleukin-1 receptor-associated kinase 4 and cyclin-dependent kinase 1.

Conclusion. The results of the study indicate not only the oncological safety of the HPH used in therapy but also the mild antitumor effects of this HPH at high concentrations.

About the authors

Olga A. Gromova

Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences

Author for correspondence.
Email: unesco.gromova@gmail.com
ORCID iD: 0000-0002-7663-710X

д-р мед. наук, проф., вед. науч. сотр. ФИЦ ИУ РАН

Russian Federation, Moscow

Marina V. Filimonova

National Medical Research Radiological Centre; Tsyb Medical Radiological Research Center – branch of the National Medical Research Radiological Centre

Email: unesco.gromova@gmail.com
ORCID iD: 0000-0002-9690-4746

д-р мед. наук, д-р биол. наук, проф. ФГБУ «НМИЦ радиологии», зав. лаб. радиационной фармакологии МРНЦ им. А.Ф. Цыба – филиала ФГБУ «НМИЦ радиологии»

Russian Federation, Moscow; Obninsk

Ivan Yu. Torshin

Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences

Email: unesco.gromova@gmail.com
ORCID iD: 0000-0002-2659-7998

канд. физ.-мат. наук, канд. хим. наук, вед. науч. сотр. ФИЦ ИУ РАН

Russian Federation, Moscow

Daria Е. Frolova

Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences; Ivanovo State Medical University

Email: unesco.gromova@gmail.com
ORCID iD: 0000-0002-1912-4607

канд. мед. наук, науч. сотр. ФИЦ ИУ РАН, ассистент каф. онкологии, акушерства и гинекологии ФГБОУ ВО ИГМУ

Russian Federation, Moscow; Ivanovo

References

  1. Громова О.А., Торшин И.Ю., Чучалин А.Г., Максимов В.А. Гидролизаты плаценты человека: от В.П. Филатова до наших дней. Терапевтический архив. 2022;94(3):434-41 [Gromova OA, Torshin IYu, Chuchalin AG, Maksimov V.A. Human placenta hydrolysates: From V.P. Filatov to the present day. Terapevticheskii Arkhiv (Ter. Arkh.). 2022;94(3):434-41 (in Russian)]. doi: 10.26442/00403660.2022.03.201408
  2. Громова О. А., Торшин И. Ю., Тихонова О. В., Згода В. Г. Гепатопротекторные пептиды препарата Лаеннек. Экспериментальная и клиническая гастроэнтерология. 2022;203(7):21-30 [Gromova OA, Torshin IYu, Tikhonova OV, Zgoda VG. Hepatoprotective peptides of the drug Laennec. Experimental and Clinical Gastroenterology. 2022;203(7):21-30 (in Russian)]. doi: 10.31146/1682-8658-ecg-203-7-21-30
  3. Громова О.А., Торшин И.Ю., Громов А.Н., Тихонова О.В. Нефропротекторные пептиды препарата Лаеннек® в контексте фармакотерапии нефрогепатометаболических нарушений. Фармакоэкономика. Современная фармакоэкономика и фармакоэпидемиология. 2023;16(4):570-86 [Gromova OA, Torshin IYu, Gromov АN, Tikhonova OV. Nephroprotective peptides of Laennec® in the context of pharmacotherapy for nephro-hepato-metabolic disorders. Farmakoekonomika. Modern Pharmacoeconomics and Pharmacoepidemiology. 2023;16(4):570-86 (in Russian)]. doi: 10.17749/2070-4909/farmakoekonomika.2023.215
  4. Ghoneum M, El-Gerbed MSA. Human placental extract ameliorates methotrexate-induced hepatotoxicity in rats via regulating antioxidative and anti-inflammatory responses. Cancer Chemother Pharmacol. 2021;88(6):961-71. doi: 10.1007/s00280-021-04349-4
  5. Mahran HA, Khedr YI, Gawaan YM, El-Gerbed MSA. Possible ameliorative effect of human placental extract on methotrexate-induced nephrotoxicity in albino rats. JoBAZ. 2022:83:39. doi: 10.1186/s41936-022-00302-w
  6. Nurieva EV, Trofimova TP, Alexeev AA, et al. Synthesis and antihypotensive properties of 2-amino-2-thiazoline analogues with enhanced lipophilicity. Mendeleev Communications. 2018;28(4):390-2. doi: 10.1016/j.mencom.2018.07.016
  7. Кейтс М. Техника липидологии. М.: Мир, 1975 [Keits M. Tekhnika lipidologii. Moscow: Mir, 1975 (in Russian)].
  8. Дарбре А. Практическая химия белка. М.: Мир, 1989 [Darbre A. Prakticheskaia khimiia belka. Moscow: Mir, 1989 (in Russian)].
  9. Torshin IY, Rudakov KV. Combinatorial analysis of the solvability properties of the problems of recognition and completeness of algorithmic models. Part 1: Factorization approach. Pattern Recognition and Image Analysis (Advances in Mathematical Theory and Applications). 2017;27(1):16-28. doi: 10.1134/S1054661817010151
  10. Torshin IYu, Rudakov KV. Combinatorial analysis of the solvability properties of the problems of recognition and completeness of algorithmic models. Part 2: Metric approach within the framework of the theory of classification of feature values. Pattern Recognition and Image Analysis (Advances in Mathematical Theory and Applications). 2017;27(2):184-99. doi: 10.1134/S1054661817020110
  11. Torshin IY. Optimal dictionaries of the final information on the basis of the solvability criterion and their applications in bioinformatics. Pattern Recognition and Image Analysis (Advances in Mathematical Theory and Applications). 2013;23(2):319-27. doi: 10.1134/S1054661813020156
  12. Torshin IYu, Rudakov KV. On the theoretical basis of the metric analysis of poorly formalized problems of recognition and classification. Pattern Recognition and Image Analysis (Advances in Mathematical Theory and Applications). 2015;25(4):577-87. doi: 10.1134/S1054661815040252
  13. Torshin IYu, Rudakov KV. On metric spaces arising during formalization of problems of recognition and classification. Part 2: Density properties. Pattern Recognition and Image Analysis (Advances in Mathematical Theory and Applications). 2016;26(3):483-96. doi: 10.1134/S1054661816030202
  14. Torshin IY, Rudakov K.V. On the application of the combinatorial theory of solvability to the analysis of chemographs. Part 1: Fundamentals of modern chemical bonding theory and the concept of the chemograph. Pattern Recognition and Image Analysis (Advances in Mathematical Theory and Applications). 2014;24(1):11-23. doi: 10.1134/S1054661814010209
  15. Torshin IYu, Rudakov KV. On the procedures of generation of numerical features over partitions of sets of objects in the problem of predicting numerical target variables. Pattern Recognition and Image Analysis (Advances in Mathematical Theory and Applications). 2019;29(4):654-67. doi: 10.1134/S1054661819040175
  16. Torshin IYu. Sensing the change from molecular genetics to personalized medicine. Ed. OA Gromova. New York: Nova Biomedical Books, 2009.
  17. Шадрин В.С., Кожин П.М., Шошина О.О., и др. Теломеризованные фибробласты как потенциальный объект для 3D-моделирования патологических гипертрофических рубцов in vitro. Вестник РГМУ. 2020;(5):82-90 [Shadrin VS, Kozhin PM, Shoshina OO, et al. Telomerized fibroblasts as a candidate 3D in vitro model of pathological hypertrophic scars. Bulletin of RSMU. 2020;(5):82-90 (in Russian)]. doi: 10.24075/vrgmu.2020.057
  18. Burkhard K, Shapiro P. Use of inhibitors in the study of MAP kinases. Methods Mol Biol. 2010;661:107-22. doi: 10.1007/978-1-60761-795-2_6
  19. Sasaki T, Maier B, Koclega KD, et al. Phosphorylation regulates SIRT1 function. PLoS One. 2008;3(12):e4020. doi: 10.1371/journal.pone.0004020
  20. Nasrin N, Kaushik VK, Fortier E, et al. JNK1 phosphorylates SIRT1 and promotes its enzymatic activity. PLoS One. 2009;4(12):e8414. doi: 10.1371/journal.pone.0008414
  21. Pan Y, Wang Y, Xu J, et al. TG and VLDL cholesterol activate NLRP1 inflammasome by Nuclear Factor-κB in endothelial cells. Int J Cardiol. 2017;234:103. doi: 10.1016/j.ijcard.2016.12.156
  22. Nabel GJ, Verma IM. Proposed NF-kappa B/I kappa B family nomenclature. Genes Dev. 1993;7(11):2063. doi: 10.1101/gad.7.11.2063
  23. Sen R, Baltimore D. Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell. 1986;46(5):705-16. doi: 10.1016/0092-8674(86)90346-6
  24. Llona-Minguez S, Baiget J, Mackay SP. Small-molecule inhibitors of IkappaB kinase (IKK) and IKK-related kinases. Pharm Pat Anal. 2013;2(4):481-98. doi: 10.4155/ppa.13.31
  25. Carter RS, Pennington KN, Ungurait BJ, Ballard DW. In vivo identification of inducible phosphoacceptors in the IKKgamma/NEMO subunit of human IkappaB kinase. J Biol Chem. 2003;278(22):19642-8. doi: 10.1074/jbc.M301705200
  26. Bian Y, Song C, Cheng K, et al. An enzyme assisted RP-RPLC approach for in-depth analysis of human liver phosphoproteome. J Proteomics. 2014;96:253-62. doi: 10.1016/j.jprot.2013.11.014
  27. Fu X, Xu M, Song Y, et al. Enhanced interaction between SEC2 mutant and TCR Vβ induces MHC II-independent activation of T cells via PKCθ/NF-κB and IL-2R/STAT5 signaling pathways. J Biol Chem. 2018;293(51):19771-84. doi: 10.1074/jbc.RA118.003668
  28. Yamamoto T, Tsutsumi N, Tochio H, et al. Functional assessment of the mutational effects of human IRAK4 and MyD88 genes. Mol Immunol. 2014;58(1):66-76. doi: 10.1016/J.MOLIMM.2013.11.008
  29. George J, Motshwene PG, Wang H, et al. Two human MYD88 variants, S34Y and R98C, interfere with MyD88-IRAK4-myddosome assembly. J Biol Chem. 2011;286(2):1341-53. doi: 10.1074/jbc.M110.159996
  30. Balakrishnan A, Vyas A, Deshpande K, Vyas D. Pharmacological cyclin dependent kinase inhibitors: Implications for colorectal cancer. World J Gastroenterol. 2016;22(7):2159-64. doi: 10.3748/wjg.v22.i7.2159
  31. Daub H, Olsen JV, Bairlein M, et al. Kinase-selective enrichment enables quantitative phosphoproteomics of the kinome across the cell cycle. Mol Cell. 2008;31(3):438-48. doi: 10.1016/j.molcel.2008.07.007
  32. Zhou H, Di Palma S, Preisinger C, et al. Toward a comprehensive characterization of a human cancer cell phosphoproteome. J Proteome Res. 2013;12(1):260-71. doi: 10.1021/pr300630k

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Survival of tumor cells and immortalized fibroblasts vs concentration of human placenta hydrolysates: a – overall plot of cell line survival; b – overall plot of cell line survival (no dispersion).

Download (196KB)

Copyright (c) 2024 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies