Clinical and morphological features of lung injury long-term after SARS-CoV-2 recovery

Cover Page

Cite item

Full Text

Abstract

Aim. To study the clinical and histological profile of lung tissue in patients with persistent pulmonary disease, respiratory symptoms and CT findings after SARS-CoV-2 infection.

Materials and methods. The study included 15 patients (7 females and 8 males) with a mean age of 57.7 years. All patients underwent laboratory tests, chest computed tomography, echocardiography, and pulmonary function tests. Pulmonary tissue and bronchoalveolar lavage samples were obtained by fibrobronchoscopy, transbronchial forceps (2 patients), and lung cryobiopsy (11 patients); open biopsy was performed in 2 patients. Cellular composition, herpesvirus DNA, SARS-CoV-2, Mycobacterium tuberculosis complex, galactomannan optical density index, and bacterial and fungal microflora growth were determined in bronchoalveolar lavage. SARS-CoV-2 was also identified in samples from the nasal mucosa, throat and feces using a polymerase chain reaction.

Results. The results showed no true pulmonary fibrosis in patients recovered from SARS-CoV-2 infection with persistent respiratory symptoms, functional impairment, and CT findings after SARS-CoV-2 infection. The observed changes comply with the current and/or resolving infection and inflammatory process.

Conclusion. Thus, no true pulmonary fibrosis was found in patients after SARS-CoV-2 infection with persistent respiratory symptoms, functional impairment, and CT findings. The observed changes comply with the current and/or resolving infection and inflammatory process.

About the authors

Gulsara E. Baimakanova

Loginov Moscow Clinical Scientific Center

Author for correspondence.
Email: g.baymakanova@mknc.ru
ORCID iD: 0000-0001-8198-9313

д-р мед. наук, зав. отд. пульмонологии ГБУЗ «МКНЦ им. А.С. Логинова»

Russian Federation, Moscow

Maria Samsonova

Loginov Moscow Clinical Scientific Center; Research Institute of Pulmonology

Email: samary@mail.ru
ORCID iD: 0000-0001-8170-1260

д-р мед. наук, ст. науч. сотр. лаб. патоморфологии ГБУЗ «МКНЦ им. А.С. Логинова», зав. лаб. патологической анатомии ФГБУ «НИИ пульмонологии»

Russian Federation, Moscow; Moscow

Andrey L. Chernyaev

Research Institute of Pulmonology; Petrovsky National Research Centre of Surgery; Pirogov Russian National Research Medical University

Email: cheral12@gmail.com
ORCID iD: 0000-0002-0158-7056

д-р мед. наук, проф., зав. отд. фундаментальной пульмонологии ФГБУ «НИИ пульмонологии», вед. науч. сотр. НИИМЧ им. акад. А.П. Авцына ФГБНУ «РНЦХ им. акад. Б.В. Петровского», проф. каф. патологической анатомии и клинической патологической анатомии лечебного фак-та ФГАОУ ВО «РНИМУ им. Н.И. Пирогова»

Russian Federation, Moscow; Moscow; Moscow

Andrey S. Kontorschikov

Petrovsky National Research Centre of Surgery

Email: g.baymakanova@mknc.ru
ORCID iD: 0000-0002-1032-0353

ординатор лаб. клинической морфологии НИИМЧ им. акад. А.П. Авцына ФГБНУ «РНЦХ им. акад. Б.В. Петровского»

Russian Federation, Moscow

Andrey S. Belevskiy

Pirogov Russian National Research Medical University

Email: pulmobas@yandex.ru
ORCID iD: 0000-0001-6050-724X

д-р мед. наук, проф., зав. каф. пульмонологии ФГАОУ ВО «РНИМУ им. Н.И. Пирогова», президент Российского респираторного общества, гл. внештатный специалист – пульмонолог Департамента здравоохранения г. Москвы

Russian Federation, Moscow

References

  1. WHO. WHO coronavirus disease (COVID-19) dashboard. Available at: https://data.who.int/dashboards/covid19/cases?n=c. Accessed: 14.12.2023.
  2. Soriano JB, Murthy S, Marshall JC, et al. WHO Clinical Case Definition Working Group on Post-COVID-19 Condition. A clinical case definition of post-COVID-19 condition by a Delphi consensus. Lancet Infect Dis. 2022;22(4):e102-7. doi: 10.1016/S1473-3099(21)00703-9
  3. Чучалин А.Г. COVID-19 и безопасность человека. Терапевтический архив. 2021;93(3):253-4 [Chuchalin AG. COVID-19 and human safety. Terapevticheskii Arkhiv (Ter. Arkh.). 2021;93(3):253-4 (in Russian)]. doi: 10.26442/00403660.2021.03.200717
  4. Лизинфельд И.А., Пшеничная Н.Ю., Паролина Л.Е., и др. Оценка факторов, влияющих на вероятность госпитализации больных COVID-19 с сопутствующей патологией, и разработка на их основе прогностической модели. Терапевтический архив. 2022;94(1):57-63 [Lizinfeld IA, Pshenichnaya NYu, Parolina LE, et al. Assessing factors influencing the likelihood of hospitalization of COVID-19 patients with concomitant pathologies and developing a prognostic model based on them. Terapevticheskii Arkhiv (Ter. Arkh.). 2022;94(1):57-63 (in Russian)]. doi: 10.26442/00403660.2022.01.201323
  5. Чучалин А.Г. Фиброз легких у больных, перенесших COVID-19. Терапевтический архив. 2022;94(11):1333-9 [Chuchalin AG. Pulmonary fibrosis in patients who have had COVID-19. Terapevticheskii Arkhiv (Ter. Arkh.). 2022;94(11):1333-9 (in Russian)]. doi: 10.26442/00403660.2022.11.201943
  6. Авдеев С.Н., Адамян Л.В., Алексеева Е.И., и др. Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19): временные методические рекомендации. Версия 15 (22.02.2022). М. 2022 [Avdeiev SN, Adamian LV, Alekseeva EI, et al. Profilaktika, diagnostika i lecheniie novoi koronavirusnoi infektsii (COVID-19): vremennyie metodicheskiie rekomendatsii. Versiia 15 (22.02.2022). Moscow. 2022 (in Russian)].
  7. Маннанова И.В., Семенов В.Т., Понежева Ж.Б., и др. Клинико-лабораторная характеристика COVID-19. РМЖ. 2021;4:22-5 [Mannanova IV, Semenov VT, Ponezheva ZhB, et al. Clinical and laboratory characteristics of COVID-19. RMJ. 2021;4:22-5 (in Russian)].
  8. Малеев В.В., Вединов С.М., Городин В.Н. Современные представления о церебральной дисфункции при COVID-19. Инфекционные болезни. 2021;19(3):109-15 [Maleev VV, Vedinov SM, Gorodin VN. Modern concepts of cerebral dysfunction at COVID-19. Infectious Diseases. 2021;19(3):109-15 (in Russian)]. doi: 10.20953/1729-9225-2021-3-109-115
  9. Seeßle J, Waterboer T, Hippchen T, et al. Persistent Symptoms in Adult Patients 1 Year After Coronavirus Disease 2019 (COVID-19): A Prospective Cohort Study. Clin Infect Dis. 2022;74(7):1191-8. doi: 10.1093/cid/ciab611
  10. Rivera-Izquierdo M, Láinez-Ramos-Bossini AJ, de Alba IG, et al. Long COVID 12 months after discharge: persistent symptoms in patients hospitalised due to COVID-19 and patients hospitalised due to other causes – a multicentre cohort study. BMC Med. 2022;20(1):92. doi: 10.1186/s12916-022-02292-6
  11. Liu T, Wu D, Yan W, et al. Twelve-Month Systemic Consequences of Coronavirus Disease 2019 (COVID-19) in Patients Discharged From Hospital: A Prospective Cohort Study in Wuhan, China. Clin Infect Dis. 2022;74(11):1953-65. doi: 10.1093/cid/ciab703
  12. Huang L, Li X, Gu X, et al. Health outcomes in people 2 years after surviving hospitalisation with COVID-19: a longitudinal cohort study. Lancet Respir Med. 2022;10(9):863-76. doi: 10.1016/S2213-2600(22)00126-6
  13. Chen Y, Ding C, Yu L, et al. One-year follow-up of chest CT findings in patients after SARS-CoV-2 infection. BMC Med. 2021;19(1):191. doi: 10.1186/s12916-021-02056-8
  14. Han X, Fan Y, Alwalid O, et al. Fibrotic Interstitial Lung Abnormalities at 1-year Follow-up CT after Severe COVID-19. Radiology. 2021;301(3):E438-40. doi: 10.1148/radiol.2021210972
  15. Pan F, Yang L, Liang B, et al. Chest CT Patterns from Diagnosis to 1 Year of Follow-up in Patients with COVID-19. Radiology. 2022;302(3):709-19. doi: 10.1148/radiol.2021211199
  16. Luger AK, Sonnweber T, Gruber L, et al. Chest CT of Lung Injury 1 Year after COVID-19 Pneumonia: The CovILD Study. Radiology. 2022;304(2):462-70. doi: 10.1148/radiol.211670
  17. Eberst G, Claudé F, Laurent L, et al. Result of one-year, prospective follow-up of intensive care unit survivors after SARS-CoV-2 pneumonia. Ann Intensive Care. 2022;12(1):23. doi: 10.1186/s13613-022-00997-8
  18. Vijayakumar B, Tonkin J, Devaraj A, et al. CT Lung Abnormalities after COVID-19 at 3 Months and 1 Year after Hospital Discharge. Radiology. 2022;303(2):444-54. doi: 10.1148/radiol.2021211746
  19. Bocchino M, Lieto R, Romano F, et al. Chest CT-based Assessment of 1-year Outcomes after Moderate COVID-19 Pneumonia. Radiology. 2022;305(2):479-85. doi: 10.1148/radiol.220019
  20. Guler SA, Ebner L, Aubry-Beigelman C, et al. Pulmonary function and radiological features 4 months after COVID-19: first results from the national prospective observational Swiss COVID-19 lung study. Eur Respir J. 2021;57(4):2003690. doi: 10.1183/13993003.03690-2020
  21. van Gassel RJJ, Bels JLM, Raafs A, et al. High Prevalence of Pulmonary Sequelae at 3 Months after Hospital Discharge in Mechanically Ventilated Survivors of COVID-19. Am J Respir Crit Care Med. 2021;203(3):371-4. doi: 10.1164/rccm.202010-3823LE
  22. Caruso D, Guido G, Zerunian M, et al. Post-Acute Sequelae of COVID-19 Pneumonia: Six-month Chest CT Follow-up. Radiology. 2021;301(2):E396-405. doi: 10.1148/radiol.2021210834
  23. Ravaglia C, Doglioni C, Chilosi M, et al. Clinical, radiological and pathological findings in patients with persistent lung disease following SARS-CoV-2 infection. Eur Respir J. 2022;60(4):2102411. doi: 10.1183/13993003.02411-2021
  24. Aesif SW, Bribriesco AC, Yadav R, et al. Pulmonary Pathology of COVID-19 Following 8 Weeks to 4 Months of Severe Disease: A Report of Three Cases, Including One With Bilateral Lung Transplantation. Am J Clin Pathol. 2021;155(4):506-14. doi: 10.1093/ajcp/aqaa264
  25. Konopka KE, Perry W, Huang T, et al. Usual Interstitial Pneumonia is the Most Common Finding in Surgical Lung Biopsies from Patients with Persistent Interstitial Lung Disease Following Infection with SARS-CoV-2. EClinicalMedicine. 2021;42:101209. doi: 10.1016/j.eclinm.2021.101209
  26. Swank Z, Senussi Y, Manickas-Hill Z, et al. Persistent Circulating Severe Acute Respiratory Syndrome Coronavirus 2 Spike Is Associated With Post-acute Coronavirus Disease 2019 Sequelae. Clin Infect Dis. 2023;76(3):e487-90. doi: 10.1093/cid/ciac722
  27. Proal AD, VanElzakker MB. Long COVID or Post-acute Sequelae of COVID-19 (PASC): An Overview of Biological Factors That May Contribute to Persistent Symptoms. Front Microbiol. 2021;12:698169. doi: 10.3389/fmicb.2021.698169
  28. Phetsouphanh C, Darley DR, Wilson DB, et al. Immunological dysfunction persists for 8 months following initial mild-to-moderate SARS-CoV-2 infection. Nat Immunol. 2022;23(2):210-6. doi: 10.1038/s41590-021-01113-x
  29. Zubchenko S, Kril I, Nadizhko O, et al. Herpesvirus infections and post-COVID-19 manifestations: a pilot observational study. Rheumatol Int. 2022;42(9):1523-30. doi: 10.1007/s00296-022-05146-9
  30. Liu Q, Mak JWY, Su Q, et al. Gut microbiota dynamics in a prospective cohort of patients with post-acute COVID-19 syndrome. Gut. 2022;71(3):544-52. doi: 10.1136/gutjnl-2021-325989
  31. Yeoh YK, Zuo T, Lui GC, et al. Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19. Gut. 2021;70(4):698-706. doi: 10.1136/gutjnl-2020-323020
  32. Wallukat G, Hohberger B, Wenzel K, et al. Functional autoantibodies against G-protein coupled receptors in patients with persistent Long-COVID-19 symptoms. J Transl Autoimmun. 2021;4:100100. doi: 10.1016/j.jtauto.2021.100100
  33. Su Y, Yuan D, Chen DG, et al. Multiple early factors anticipate post-acute COVID-19 sequelae. Cell. 2022;185(5):881-95.e20. doi: 10.1016/j.cell.2022.01.014
  34. Arthur JM, Forrest JC, Boehme KW, et al. Development of ACE2 autoantibodies after SARS-CoV-2 infection. PLoS One. 2021;16(9):e0257016. doi: 10.1371/journal.pone.0257016
  35. Charfeddine S, Ibn Hadj Amor H, Jdidi J, et al. Long COVID-19 Syndrome: Is It Related to Microcirculation and Endothelial Dysfunction? Insights From TUN-EndCOV Study. Front Cardiovasc Med. 2021;8:745758. doi: 10.3389/fcvm.2021.745758
  36. Pretorius E, Venter C, Laubscher GJ, et al. Prevalence of symptoms, comorbidities, fibrin amyloid microclots and platelet pathology in individuals with Long COVID/Post-Acute Sequelae of COVID-19 (PASC). Cardiovasc Diabetol. 2022;21(1):148. doi: 10.1186/s12933-022-01579-5
  37. Spudich S, Nath A. Nervous system consequences of COVID-19. Science. 2022;375(6578):267-9. doi: 10.1126/science.abm2052
  38. Ehab A, Reissfelder F, Laufer J, et al. Transbronchial lung cryobiopsy performed in acute COVID-19 pneumonia: first report. Adv Respir Med. 2021;89(1):72-4. doi: 10.5603/ARM.a2021.0032
  39. De Gopegui Miguelena PR, Chamarro MP, Vega LMC. Afectación endotelial por Covid-19 en criobiopsia pulmonar. Archivos de Bronconeumología. 2020;57:65. doi: 10.1016/j.arbres.2020.06.010
  40. Doglioni C, Ravaglia C, Rossi G, et al. Acute Lung injury evolution in Covid-19. MedRxiv. 2020. doi: 10.1101/2020.08.09.20170910
  41. Barisione E, Grillo F, Ball L, et al. Fibrotic progression and radiologic correlation in matched lung samples from COVID-19 post-mortems. Virchows Arch. 2021;478(3):471-85. doi: 10.1007/s00428-020-02934-1
  42. Su Y, Yuan D, Chen DG, et al. Multiple early factors anticipate post-acute COVID-19 sequelae. Cell. 2022;185(5):881-95.e20. doi: 10.1016/j.cell.2022.01.014
  43. Bastard P, Gervais A, Le Voyer T, et al. Autoantibodies neutralizing type I IFNs are present in ~4% of uninfected individuals over 70 years old and account for ~20% of COVID-19 deaths. Sci Immunol. 2021;6(62):eabl4340. doi: 10.1126/sciimmunol.abl4340
  44. Wang C, Wang Z, Wang G, et al. COVID-19 in early 2021: current status and looking forward. Signal Transduct Target Ther. 2021;6(1):114. doi: 10.1038/s41392-021-00527-1
  45. Bone RC. Toward a theory regarding the pathogenesis of the systemic inflammatory response syndrome: what we do and do not know about cytokine regulation. Crit Care Med. 1996;24(1):163-72. doi: 10.1097/00003246-199601000-00026
  46. Chang S, Pierson E, Koh PW, et al. Mobility network models of COVID-19 explain inequities and inform reopening. Nature. 2021;589(7840):82-7. doi: 10.1038/s41586-020-2923-3
  47. Parasa S, Desai M, Thoguluva Chandrasekar V, et al. Prevalence of Gastrointestinal Symptoms and Fecal Viral Shedding in Patients With Coronavirus Disease 2019: A Systematic Review and Meta-analysis. JAMA Netw Open. 2020;3(6):e2011335. doi: 10.1001/jamanetworkopen.2020.11335
  48. Hotchkiss RS, Monneret G, Payen D. Immunosuppression in sepsis: a novel understanding of the disorder and a new therapeutic approach. Lancet Infect Dis. 2013;13(3):260-8. doi: 10.1016/S1473-3099(13)70001-X
  49. Sugimoto MA, Sousa LP, Pinho V, et al. Resolution of Inflammation: What Controls Its Onset? Front Immunol. 2016;7:160. doi: 10.3389/fimmu.2016.00160
  50. Bozza FA, Salluh JI, Japiassu AM, et al. Cytokine profiles as markers of disease severity in sepsis: a multiplex analysis. Crit Care. 2007;11(2):R49. doi: 10.1186/cc5783
  51. Pretorius L, Kell DB, Pretorius E. Iron Dysregulation and Dormant Microbes as Causative Agents for Impaired Blood Rheology and Pathological Clotting in Alzheimer's Type Dementia. Front Neurosci. 2018;12:851. doi: 10.3389/fnins.2018.00851
  52. Fitridge R, Thompson M, eds. Mechanisms of Vascular Disease: A Reference Book for Vascular Specialists. Adelaide (AU): University of Adelaide Press, 2011.
  53. Hamers L, Kox M, Pickkers P. Sepsis-induced immunoparalysis: mechanisms, markers, and treatment options. Minerva Anestesiol. 2015;81(4):426-39.
  54. Walton AH, Muenzer JT, Rasche D, et al. Reactivation of multiple viruses in patients with sepsis. PLoS One. 2014;9(2):e98819. doi: 10.1371/journal.pone.0098819
  55. Xu K, Cai H, Shen Y, et al. Management of COVID-19: the Zhejiang experience. Zhejiang Da Xue Xue Bao Yi Xue Ban. 2020;49(2):147-57. doi: 10.3785/j.issn.1008-9292.2020.02.02
  56. Baek MS, Cha MJ, Kim MC, et al. Clinical and radiological findings of adult hospitalized patients with community-acquired pneumonia from SARS-CoV-2 and endemic human coronaviruses. PLoS One. 2021;16(1):e0245547. doi: 10.1371/journal.pone.0245547
  57. Di Felice G, Visci G, Teglia F, et al. Effect of cancer on outcome of COVID-19 patients: a systematic review and meta-analysis of studies of unvaccinated patients. Elife. 2022;11:e74634. doi: 10.7554/eLife.74634
  58. Wei J, Alfajaro MM, DeWeirdt PC, et al. Genome-wide CRISPR Screens Reveal Host Factors Critical for SARS-CoV-2 Infection. Cell. 2021;184(1):76-91.e13. doi: 10.1016/j.cell.2020.10.028
  59. Truong TT, Ryutov A, Pandey U, et al. Increased viral variants in children and young adults with impaired humoral immunity and persistent SARS-CoV-2 infection: A consecutive case series. EBioMedicine. 2021;67:103355. doi: 10.1016/j.ebiom.2021.103355
  60. Choi B, Choudhary MC, Regan J, et al. Persistence and Evolution of SARS-CoV-2 in an Immunocompromised Host. N Engl J Med. 2020;383(23):2291-3. doi: 10.1056/NEJMc2031364
  61. Obeid M, Suffiotti M, Pellaton C, et al. Humoral Responses Against Variants of Concern by COVID-19 mRNA Vaccines in Immunocompromised Patients. JAMA Oncol. 2022;8(5):e220446. doi: 10.1001/jamaoncol.2022.0446
  62. Sjöwall J, Azharuddin M, Frodlund M, et al. SARS-CoV-2 Antibody Isotypes in Systemic Lupus Erythematosus Patients Prior to Vaccination: Associations With Disease Activity, Antinuclear Antibodies, and Immunomodulatory Drugs During the First Year of the Pandemic. Front Immunol. 2021;12:724047. doi: 10.3389/fimmu.2021.724047
  63. Huang L, Li X, Gu X, et al. Health outcomes in people 2 years after surviving hospitalisation with COVID-19: a longitudinal cohort study. Lancet Respir Med. 2022;10(9):863-76. doi: 10.1016/S2213-2600(22)00126-6
  64. Moss P. The T cell immune response against SARS-CoV-2. Nat Immunol. 2022;23(2):186-93. doi: 10.1038/s41590-021-01122-w
  65. Mohanraj D, Bicknell K, Bhole M, et al. Antibody Responses to SARS-CoV-2 Infection-Comparative Determination of Seroprevalence in Two High-Throughput Assays versus a Sensitive Spike Protein ELISA. Vaccines (Basel). 2021;9(11):1310. doi: 10.3390/vaccines9111310
  66. Sherina N, Piralla A, Du L, et al. Persistence of SARS-CoV-2-specific B and T cell responses in convalescent COVID-19 patients 6-8 months after the infection. Med. 2021;2(3):281-95.e4. doi: 10.1016/j.medj.2021.02.001
  67. Jung JH, Rha MS, Sa M, et al. SARS-CoV-2-specific T cell memory is sustained in COVID-19 convalescent patients for 10 months with successful development of stem cell-like memory T cells. Nat Commun. 2021;12(1):4043. doi: 10.1038/s41467-021-24377-1
  68. Zuo J, Dowell AC, Pearce H, et al. Robust SARS-CoV-2-specific T cell immunity is maintained at 6 months following primary infection. Nat Immunol. 2021;22(5):620-6. doi: 10.1038/s41590-021-00902-8
  69. Izadi Z, Brenner EJ, Mahil SK, et al. Association Between Tumor Necrosis Factor Inhibitors and the Risk of Hospitalization or Death Among Patients With Immune-Mediated Inflammatory Disease and COVID-19. JAMA Netw Open. 2021;4(10):e2129639. doi: 10.1001/jamanetworkopen.2021.29639
  70. Ahmed H, Patel K, Greenwood DC, et al. Long-term clinical outcomes in survivors of severe acute respiratory syndrome and Middle East respiratory syndrome coronavirus outbreaks after hospitalisation or ICU admission: A systematic review and meta-analysis. J Rehabil Med. 2020;52(5):jrm00063. doi: 10.2340/16501977-2694
  71. Marvisi M, Ferrozzi F, Balzarini L, et al. First report on clinical and radiological features of COVID-19 pneumonitis in a Caucasian population: Factors predicting fibrotic evolution. Int J Infect Dis. 2020;99:485-8. doi: 10.1016/j.ijid.2020.08.054
  72. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506. doi: 10.1016/S0140-6736(20)30183-5
  73. Ojo AS, Balogun SA, Williams OT, Ojo OS. Pulmonary Fibrosis in COVID-19 Survivors: Predictive Factors and Risk Reduction Strategies. Pulm Med. 2020;2020:6175964. doi: 10.1155/2020/6175964
  74. Gao YD, Ding M, Dong X, et al. Risk factors for severe and critically ill COVID-19 patients: A review. Allergy. 2021;76(2):428-55. doi: 10.1111/all.14657
  75. Hu ZJ, Xu J, Yin JM, et al. Lower Circulating Interferon-Gamma Is a Risk Factor for Lung Fibrosis in COVID-19 Patients. Front Immunol. 2020;11:585647. doi: 10.3389/fimmu.2020.585647

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Organizing focal pneumonia. Hematoxylin and eosin staining.

Download (340KB)
3. Fig. 2. Cellular type of nonspecific interstitial pneumonia. Hematoxylin and eosin staining.

Download (359KB)
4. Fig. 3. Fibrous type of nonspecific interstitial pneumonia. Hematoxylin and eosin staining.

Download (310KB)
5. Fig. 4. Fibrous type of nonspecific interstitial pneumonia: thickening of the interalveolar septum due to the proliferation of myofibroblasts and fibroblasts. Immunohistochemistry: a – SMA; b – vimentin.

Download (433KB)
6. Fig. 5. Focal intra-alveolar hemorrhage, edema. Hematoxylin and eosin staining.

Download (360KB)
7. Fig. 6. Focal peribronchial fibrosis, represented by fibroatelectasis with slit-like structures. Hematoxylin and eosin staining.

Download (304KB)

Copyright (c) 2024 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies