Efficacy of human placenta hydrolyzate in the treatment of patients with metabolic associated fatty liver disease at the stage of fibrosis (pilot study)

Cover Page

Cite item

Full Text

Abstract

Background. Despite active research, drug treatment options for metabolic associated fatty liver disease (MAFLD) are limited, and there are no currently approved drugs for patients with MAFLD. Treatment of patients at risk of developing non-alcoholic steatohepatitis and progressive liver fibrosis (LF) is of particular relevance, since they determine the clinical outcomes of the disease.

Aim. To evaluate the clinical efficacy of complex polypeptide drug (CPD), human placenta hydrolyzate, containing low molecular weight regulatory peptides, amino acids, vitamins, macro- and microelements in patients with MAFLD at the LF stage.

Materials and methods. A single-center, placebo-controlled pilot study. Patients with MAFLD at LF stage 1≤F≤3 according to METAVIR were included (n=10, of which 8 were women, median age was 55 years old). Patients were randomized into 2 groups: 5 people received CPD therapy for 12 weeks (intravenous infusion of 6 ml 2 times a week); another 5 people initially received placebo x 2 times a week (12 weeks), with transfer to the open phase for CPD therapy in the same regimen. The dynamics laboratory and instrumental data was assessed, as well as determine the presence of fibrosis by non-invasive tests – measurement of liver stiffness by transient elastography and use of serum biomarker (SM) by FibroTest and detection of steatosis with controlled attenuation parameter for transient elastography and SM by SteatoTest. The quality of life of patients was assessed using questionnaire SF-36 and well-being via Visual Analogue Scale. Statistical processing of the material was carried out using the methods of nonparametric analysis, using the Statistica 13.3 software.

Results. Patients in the CPD group compared with the baseline data and with the placebo group showed a statistically significant improvement: 1) transaminases (ALT, AST), lipid profile indicators (cholesterol), ferritin; 2) indicators of LF, based on a decrease in liver stiffness by transient elastography and SM of Fibrotest, as well as the degree of steatosis based on controlled attenuation parameter and SM of Steatotest; 3) in well-being and quality of life (according to testing: SF-36 physical, mental well-being and general condition of the VAS). CPD was well tolerated, no side effects were noted.

Conclusion. In patients with MAFLD during CPD therapy, a decrease in the level of liver enzymes was noted, as well as in LF and liver steatosis according to noninvasive methods. Randomized controlled trials are required to confirm these findings.

About the authors

Elena V. Vinnitskaya

Loginov Moscow Clinical Scientific Center

Email: y.sandler@mknc.ru
ORCID iD: 0000-0002-0344-8375

д-р мед. наук, зав. отд. гепатологии

Russian Federation, Moscow

Yuliay G. Sandler

Loginov Moscow Clinical Scientific Center

Author for correspondence.
Email: y.sandler@mknc.ru

канд. мед. наук, ст. науч. сотр. научно-исследовательского отд. гепатологии 

Russian Federation, Moscow

Kirill G. Saliev

Loginov Moscow Clinical Scientific Center

Email: y.sandler@mknc.ru
ORCID iD: 0000-0002-4581-7052

мл. науч. сотр. отд. гепатологии 

Russian Federation, Moscow

Anton N. Ivanov

Loginov Moscow Clinical Scientific Center

Email: y.sandler@mknc.ru
ORCID iD: 0000-0002-3173-4221

мл. науч. сотр. отд. гепатологии 

Russian Federation, Moscow

Evgenia S. Sbikina

Loginov Moscow Clinical Scientific Center

Email: y.sandler@mknc.ru
ORCID iD: 0000-0003-2195-9643

канд. мед. наук, науч. сотр. отд. гепатологии 

Russian Federation, Moscow

Tatyana Yu. Khaymenova

Loginov Moscow Clinical Scientific Center

Email: y.sandler@mknc.ru
ORCID iD: 0000-0002-4599-4040

канд. мед. наук, зав. отд-нием заболеваний печени

Russian Federation, Moscow

Dmitry S. Bordin

Loginov Moscow Clinical Scientific Center; Russian University of Medicine; Tver State Medical University

Email: y.sandler@mknc.ru
ORCID iD: 0000-0003-2815-3992

д-р мед. наук, зав. отд. патологии поджелудочной железы, желчных путей и верхних отделов пищеварительного тракта ГБУЗ «МКНЦ им. А.С. Логинова», проф. каф. пропедевтики внутренних болезней и гастроэнтерологии ФГБОУ ВО «Российский университет медицины», проф. каф. общей врачебной практики и семейной медицины фак-та последипломного образования ФГБОУ ВО «Тверской ГМУ»

Russian Federation, Moscow; Moscow; Tver

References

  1. Byrne CD, Targher G. NAFLD: a multisystem disease. J Hepatol. 2015;62(1 Suppl.):S47-64. doi: 10.1016/j.jhep.2014.12.012
  2. Geier A, Tiniakos D, Denk H, Trauner M. From the origin of NASH to the future of metabolic fatty liver disease. Gut. 2021;70(8):1570-9. doi: 10.1136/gutjnl-2020-323202
  3. Винницкая Е.В., Сандлер Ю.Г., Бордин Д.С. Новая парадигма неалкогольной жировой болезни печени: фенотипическое многообразие метаболически ассоциированной жировой болезни печени. Эффективная фармакотерапия. 2020;16(24):54-63 [Vinnitskaya YeV, Sandler YuG, Bordin DS. The New Paradigm of Non-Alcoholic Fatty Liver Disease: Phenotypic Diversity of Metabolically Associated Fatty Liver Disease. Effektivnaia farmakoterapiia. 2020;16(24):54-63 (in Russian)]. doi: 10.33978/2307-3586-2020-16-24-54-63
  4. Rinella ME, Lazarus JV, Ratziu V, et al. A multi-society Delphi consensus statement on new fatty liver disease nomenclature. J Hepatol. 2023;79(6):1542-56. doi: 10.1016/j.jhep.2023.06.003
  5. Younossi ZM, Marchesini G, Pinto-Cortez H, Petta S. Epidemiology of Nonalcoholic Fatty Liver Disease and Nonalcoholic Steatohepatitis: Implications for Liver Transplantation. Transplantation. 2019;103(1):22-7. doi: 10.1097/TP.0000000000002484
  6. EASL–EASD–EASO Clinical practice guidelines for the management of non-alcoholic fatty liver disease. Diabetologia. 2016;59(6):1121-40. doi: 10.1007/s00125-016-3902-y
  7. Younossi ZM, Koenig AB, Abdelatif D, et al. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology. 2016;64(1):73-84. doi: 10.1002/hep.28431
  8. Chalasani N, Younossi Z, Lavine JE, et al. The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases. Hepatology. 2018;67(1):328-57. doi: 10.1002/hep.29367
  9. Younossi ZM, Loomba R, Anstee QM, et al. Diagnostic modalities for nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, and associated fibrosis. Hepatology. 2018;68(1):349-60. doi: 10.1002/hep.29721
  10. Sanyal AJ, Friedman SL, McCullough AJ, et al. Challenges and opportunities in drug and biomarker development for nonalcoholic steatohepatitis: findings and recommendations from an American Association for the Study of Liver Diseases-U.S. Food and Drug Administration Joint Workshop. Hepatology. 2015;61(4):1392-405. doi: 10.1002/hep.27678
  11. Dyson JK, McPherson S, Anstee QM. Non-alcoholic fatty liver disease: non-invasive investigation and risk stratification. J Clin Pathol. 2013;66(12):1033-45. doi: 10.1136/jclinpath-2013-201620
  12. Festi D, Schiumerini R, Scaioli E, Colecchia A. Letter: FibroTest for staging fibrosis in non-alcoholic fatty liver disease – authors' reply. Aliment Pharmacol Ther. 2013;37(6):656-7. doi: 10.1111/apt.12228
  13. Маевская М.В., Котовская Ю.В., Ивашкин В.Т., и др. Национальный Консенсус для врачей по ведению взрослых пациентов с неалкогольной жировой болезнью печени и ее основными коморбидными состояниями. Терапевтический архив. 2022;94(2):216-53 [Maevskaya MV, Kotovskaya YuV, Ivashkin VT, et al. The National Consensus statement on the management of adult patients with non-alcoholic fatty liver disease and main comorbidities. Terapevticheskii Arkhiv (Ter. Arkh.). 2022;94(2):216-53. doi: 10.26442/00403660.2022.02.201363
  14. Sanal MG. Biomarkers in nonalcoholic fatty liver disease – the emperor has no clothes? World J Gastroenterol. 2015;21(11):3223-31. doi: 10.3748/wjg.v21.i11.3223
  15. Castera L, Friedrich-Rust M, Loomba R. Noninvasive Assessment of Liver Disease in Patients With Nonalcoholic Fatty Liver Disease. Gastroenterology. 2019;156(5):1264-81.e4. doi: 10.1053/j.gastro.2018.12.036.
  16. Lassailly G, Caiazzo R, Hollebecque A, et al. Validation of noninvasive biomarkers (FibroTest, SteatoTest, and NashTest) for prediction of liver injury in patients with morbid obesity. Eur J Gastroenterol Hepatol. 2011;23(6):499-506. doi: 10.1097/meg.0b013e3283464111
  17. Винницкая Е.В., Сандлер Ю.Г., Кейян В.А., и др. Применение современных методов диагностики фиброза и стеатоза печени в диагностике хронических заболеваний печени в условиях стационарных и поликлинических учреждений: методические рекомендации. М. 2019 [Vinnitskaia EV, Sandler IuG, Keiian VA, et al. Primenenie sovremennykh metodov diagnostiki fibroza i steatoza pecheni v diagnostike khronicheskikh zabolevanii pecheni v usloviiakh statsionarnykh i poliklinicheskikh uchrezhdenii: metodicheskie rekomendatsii. Moscow. 2019 (in Russian)].
  18. Patel K, Sebastiani G. Limitations of non-invasive tests for assessment of liver fibrosis. JHEP Rep. 2020;2(2):100067. doi: 10.1016/j.jhepr.2020.100067
  19. Younossi ZM, Ratziu V, Loomba R, et al. Obeticholic acid for the treatment of non-alcoholic steatohepatitis: interim analysis from a multicentre, randomised, placebo-controlled phase 3 trial. Lancet. 2019;394(10215):2184-96. doi: 10.1016/s0140-6736(19)33041-7
  20. Ratziu V, Sanyal A, Harrison SA, et al. Cenicriviroc Treatment for Adults With Nonalcoholic Steatohepatitis and Fibrosis: Final Analysis of the Phase 2b CENTAUR Study. Hepatology. 2020;72(3):892-905. doi: 10.1002/hep.31108
  21. AURORA: phase 3 study for the efficacy and safety of CVC for the treatment of liver fibrosis in adults with nonalcoholic steatohepatitis. 2017. Available at: https://clinicaltrials.gov/ct2/show/NCT03028740. Accessed: 28.09.2023.
  22. Newsome PN, Buchholtz K, Cusi K, et al. A Placebo-Controlled Trial of Subcutaneous Semaglutide in Nonalcoholic Steatohepatitis. N Engl J Med. 2021;384(12):1113-24. doi: 10.1056/nejmoa2028395
  23. Неалкогольная жировая болезнь печени у взрослых: клинические рекомендации. Режим доступа: https://cr.minzdrav.gov.ru/schema/748_1. Ссылка активна на 12.10.2023 [Nealkogol'naia zhirovaia bolezn' pecheni u vzroslykh: klinicheskie rekomendatsii. Available at: https://cr.minzdrav.gov.ru/schema/748_1. Accessed: 12.10.2023 (in Russian)].
  24. Тран В.Т., Торшин И.Ю., Громова О.А. Открытое контролируемое исследование эффективности и безопасности применения Лаеннека для улучшения функции печени у пациентов с неалкогольной жировой болезнью печени. Экспериментальная и клиническая гастроэнтерология. 2023;(8):48-56 [Tran VT, Torshin IYu, Gromova OA. An open-label, controlled trial of the efficacy and safety of Laennec to improve liver function in patients with non-alcoholic fatty liver disease. Experimental and Clinical Gastroenterology. 2023;(8):48-56 (in Russian)]. doi: 10.31146/1682-8658-ecg-216-8-48-56
  25. Пирогова И.Ю., Неуймина Т.В., Сучкова О.В., и др. Препарат Лаеннек (гидролизат плаценты человека) в монотерапии стеатогепатитов смешанной этиологии. Экспериментальная и клиническая гастроэнтерология. 2023;(8):37-47 [Pirogova IYu, Neuimina TV, Suchkova OV, et al. Laennec (Human placenta hydrolyzate) in monotherapy of mixed etiology of steatohepatitis. Experimental and Clinical Gastroenterology. 2023;(8):37-47 (in Russian)]. doi: 10.31146/1682-8658-ecg-216-8-37-47
  26. Торшин И.Ю., Громова О.А., Тихонова О.В., Згода В.Г. Гепатопротекторные пептиды препарата Лаеннек. Экспериментальная и клиническая гастроэнтерология. 2022;(7):21-30 [Torshin IYu, Gromova OA, Tikhonova OV, Zgoda VG. Hepatoprotective peptides of the drug Laennec. Experimental and Clinical Gastroenterology. 2022;(7):21-30 (in Russian)]. doi: 10.31146/1682-8658-ecg-203-7-21-30
  27. Ibrahim SH, Hirsova P, Malhi H, Gores GJ. Animal Models of Nonalcoholic Steatohepatitis: Eat, Delete, and Inflame. Dig Dis Sci. 2016;61(5):1325-36. doi: 10.1007/s10620-015-3977-1
  28. Larter CZ, Yeh MM, Williams J, et al. MCD-induced steatohepatitis is associated with hepatic adiponectin resistance and adipogenic transformation of hepatocytes. J Hepatol. 2008;49(3):407-16. doi: 10.1016/j.jhep.2008.03.026
  29. Leclercq IA, Farrell GC, Field J, et al. CYP2E1 and CYP4A as microsomal catalysts of lipid peroxides in murine nonalcoholic steatohepatitis. J Clin Invest. 2000;105(8):1067-75. doi: 10.1172/jci8814
  30. Miyao M, Kotani H, Ishida T, et al. Pivotal role of liver sinusoidal endothelial cells in NAFLD/NASH progression. Lab Invest. 2015;95(10):1130-44. doi: 10.1038/labinvest.2015.95
  31. Yamauchi A, Kamiyoshi A, Koyama T, et al. Placental extract ameliorates non-alcoholic steatohepatitis (NASH) by exerting protective effects on endothelial cells. Heliyon. 2017;3(9):e00416. doi: 10.1016/j.heliyon.2017.e00416
  32. Wang G, Yeung CK, Wong WY, et al. Liver Fibrosis Can Be Induced by High Salt Intake through Excess Reactive Oxygen Species (ROS) Production. J Agric Food Chem. 2016;64(7):1610-7. doi: 10.1021/acs.jafc.5b05897
  33. Chen CP, Tsai PS, Huang CJ. Antiinflammation effect of human placental multipotent mesenchymal stromal cells is mediated by prostaglandin E2 via a myeloid differentiation primary response gene 88-dependent pathway. Anesthesiology. 2012;117(3):568-79. doi: 10.1097/aln.0b013e31826150a9
  34. Samala N, Desai A, Vilar-Gomez E, et al. Decreased Quality of Life Is Significantly Associated With Body Composition in Patients With Nonalcoholic Fatty Liver Disease. Clin Gastroenterol Hepatol. 2020;18(13):2980-8.e4. doi: 10.1016/j.cgh.2020.04.046
  35. Zhou R, Tardivel A, Thorens B, et al. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol. 2009;11(2):136-40. doi: 10.1038/ni.1831
  36. Evans DL, Charney DS, Lewis L, et al. Mood disorders in the medically ill: scientific review and recommendations. Biol Psychiatry. 2005;58(3):175-89. doi: 10.1016/j.biopsych.2005.05.001
  37. Vandanmagsar B, Youm Y-H, Ravussin A, et al. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat Med. 2011;17(2):179-88. doi: 10.1038/nm.2279
  38. Iwata M, Ota KT, Duman RS. The inflammasome: pathways linking psychological stress, depression, and systemic illnesses. Brain Behav Immun. 2013;31(1):105-14. doi: 10.1016/j.bbi.2012.12.008
  39. Mason DR, Beck PL, Muruve DA. Nucleotide-binding oligomerization domain-like receptors and inflammasomes in the pathogenesis of non-microbial inflammation and diseases. Journal of Innate Immunity. 2012;4(1):16-30. doi: 10.1159/000334247
  40. Mariathasan S, Newton K, Monack DM, et al. Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature. 2004;430(6996):213-8. doi: 10.1038/nature02664
  41. Martinon F, Burns K, Tschopp J. The inflammasome. Mol Cell. 2002;10(2):417-26. doi: 10.1016/s1097-2765(02)00599-3
  42. Schroder K, Tschopp J. The inflammasomes. Cell. 2010;140(6):821-32. doi: 10.1016/j.cell.2010.01.040
  43. Park H-J, Shim H-S, Chung SY, et al. Soyo-san reduces depressive-like behavior and proinflammatory cytokines in ovariectomized female rats. BMC Complement Altern Med. 2014;14:34. doi: 10.1186/1472-6882-14-34
  44. Seo J-S, Park J-Y, Choi J, et al. NADPH oxidase mediates depressive behavior induced by chronic stress in mice. J Neurosci. 2012;32(28):9690-9. doi: 10.1523/jneurosci.0794-12.2012
  45. Patil R, Dhawale K, Gound H, Gadakh R. Protective effect of leaves of murrayakoenigii on reserpine-induced orofacial dyskinesia. Iran J Pharm Res. 2012;11(2):635-41.
  46. Lenzi J, Rodrigues AF, de Sousa Rós A, et al. Erratum to: Ferulic acid chronic treatment exerts antidepressant-like effect: role of antioxidant defense system. Metab Brain Dis. 2015;30(6):1465. doi: 10.1007/s11011-015-9751-4
  47. Sacchet C, Mocelin R, Sachett A, et al. Antidepressant-Like and Antioxidant Effects of Plinia trunciflora in Mice. Evid Based Complement Alternat Med. 2015;2015:601503. doi: 10.1155/2015/601503
  48. Silva MC, de Sousa CNS, Gomes PXL, et al. Evidence for protective effect of lipoic acid and desvenlafaxine on oxidative stress in a model depression in mice. Prog Neuropsychopharmacol Biol Psychiatry. 2016;64:142-8. doi: 10.1016/j.pnpbp.2015.08.002
  49. Yu HC, Wu J, Zhang HX, et al. Antidepressant-like and anti-oxidative efficacy of Campsis grandiflora flower. J Pharm Pharmacol. 2015;67(12):1705-15. doi: 10.1111/jphp.12466
  50. Chakraborty D, Basu JM, Sen P, et al. Human placental extract offers protection against experimental visceral leishmaniasis: a pilot study for a phase-I clinical trial. Ann Trop Med Parasitol. 2008;102(1):21-38. doi: 10.1179/136485908x252133
  51. Akyol N, Akpolat N. Effects of intraoperative oxidated regenerated cellulose on wound healing reaction after glaucoma filtration surgery: A comparative study with Interceed and Surgicel. Indian J Ophthalmol. 2008;56(2):109-14. doi: 10.4103/0301-4738.39114
  52. Kaushal V, Verma K, Manocha S, et al. Clinical evaluation of human placental extract (placentrex) in radiation-induced oral mucositis. Int J Tissue React. 2001;23(3):105-10.
  53. Mason DR, Beck PL, Muruve DA. Nucleotide-binding oligomerization domain-like receptors and inflammasomes in the pathogenesis of non-microbial inflammation and diseases. J Innate Immun. 2012;4(1):16-30. doi: 10.1159/000334247
  54. Park H-J, Shim HS, Lee S, et al. Anti-stress effects of human placenta extract: possible involvement of the oxidative stress system in rats. BMC Complement Altern Med. 2018;18(1):149. doi: 10.1186/s12906-018-2193-x

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Study design.

Download (191KB)
3. Fig. 2. Change over time of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels before and after therapy in the human placenta hydrolysate group (active) and the placebo group. Data are presented as box-and-whisker plots showing Me (25th percentile; 75th percentile, min-max). Statistically significant decrease in ALT and AST (p<0.01) was reported in the active group after the treatment course with human placenta hydrolysate.

Download (122KB)
4. Fig. 3. Change over time of liver fibrosis before and after therapy in the human placenta hydrolysate group (active) and the placebo group. Data are presented as box-and-whisker plots showing Me (25th percentile; 75th percentile, min-max). Statistically significant decrease in liver elasticity (p=0.01) was reported in the active group after the treatment course with human placenta hydrolysate.

Download (63KB)
5. Fig. 4. Change over time of liver steatosis before and after therapy in the human placenta hydrolysate group (active) and the placebo group. Data are presented as box-and-whisker plots showing Me (25th percentile; 75th percentile, min-max). Statistically significant decrease in liver steatosis was reported in the active group after the treatment course with human placenta hydrolysate.

Download (71KB)

Copyright (c) 2024 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies